Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2011_23_1_a1, author = {A. Brudnyi and Yu. Brudnyi}, title = {Traces of $C^k$ functions to weak {Markov} subsets of~$\mathbb R^n$}, journal = {Algebra i analiz}, pages = {61--86}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2011_23_1_a1/} }
A. Brudnyi; Yu. Brudnyi. Traces of $C^k$ functions to weak Markov subsets of~$\mathbb R^n$. Algebra i analiz, Tome 23 (2011) no. 1, pp. 61-86. http://geodesic.mathdoc.fr/item/AA_2011_23_1_a1/
[1] Besicovitch A., “On existence of subsets of finite measure of sets of infinite measure”, Indag. Math., 14 (1952), 339–344 | MR | Zbl
[2] Brudnyi A., Brudnyi Yu., “Methods of geometric analysis in extension and trace problems” (to appear)
[3] Brudnyi A., Brudnyi Yu., “Remez type inequalities and Morrey–Campanato spaces on Ahlfors regular sets”, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 19–44 | MR | Zbl
[4] Brudnyi Yu. A., Ganzburg M. I., “Ob odnoi ekstremalnoi zadache dlya mnogochlenov $n$ peremennykh”, Izv. AN SSSR. Ser. mat., 37:2 (1973), 344–355 | MR | Zbl
[5] Bierstone E., Milman P., “$C^m$ norms on finite sets and $C^m$ extension criteria”, Duke Math. J., 137 (2007), 1–18 | DOI | MR | Zbl
[6] Brudnyi Yu. A., Shvartsman P. A., “Lineinyi operator prodolzheniya dlya prostranstva gladkikh funktsii, zadannykh na zamknutom podmnozhestve $\mathbb R^n$”, Dokl. AN SSSR, 280:2 (1985), 268–272 | MR
[7] Brudnyi Yu., Shvartsman P., “The Whitney problem of existence of a linear extension operator”, J. Geom. Anal., 7:4 (1997), 515–574 | MR | Zbl
[8] Brudnyi Yu., Shvartsman P., “Whitney extension problem for multivariate $C^{1,\omega}$-functions”, Trans. Amer. Math. Soc., 353 (2001), 2487–2512 | DOI | MR | Zbl
[9] Danzer L., Grünbaum B., Klee V., “Helly's theorem and its relatives”, Proc. Sympos. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1963, 101–180 | MR
[10] Fefferman Ch., Whitney's extension problem for certain function spaces, Preprint, 2003 | Zbl
[11] Fefferman Ch., “Interpolation and extrapolation of smooth functions by linear operators”, Rev. Mat. Iberoamericana, 21 (2005), 313–348 | MR | Zbl
[12] Fefferman Ch., “A sharp form of Whitney's extension theorem”, Ann. of Math. (2), 161 (2005), 509–577 | DOI | MR | Zbl
[13] Fefferman Ch., “Whitney's extension problem for $C^m$”, Ann. of Math. (2), 164 (2006), 313–359 | DOI | MR | Zbl
[14] Fefferman Ch., “Fitting a $C^m$-smooth function to data, III”, Ann. of Math. (2), 170:1 (2009), 427–441 | DOI | MR | Zbl
[15] Fefferman Ch., “$C^m$ extensions by linear operators”, Ann. of Math. (2), 166:12 (2007), 779–835 | DOI | MR | Zbl
[16] Fefferman Ch., “The structure of linear extension operators for $C^m$”, Rev. Mat. Iberoamericana, 23 (2007), 269–280 | MR | Zbl
[17] Falconer K., Fractal geometry. Mathematical foundations and applications, 2nd ed., John Wiley, Hoboken, NJ, 2003 | MR
[18] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag New York, Inc., New York, 1969 | MR | Zbl
[19] Glaeser G., “Étude de quelques algèbres tayloriennes”, J. Anal. Math., 6 (1958), 1–124 | DOI | MR | Zbl
[20] John F., “Extremum problems with inequalities as subsidiary conditions”, Studies and Essays Presented to R. Courant on his 60th Birthday, Intersci. Publ., Inc., New York, NY, 1948, 187–204 | MR
[21] Jonsson A., Wallin H., Function spaces on subsets of $\mathbb R^n$, Math. Rep., 2, no. 1, 1984, 221 pp. | MR | Zbl
[22] Luli G. K., “$C^{m,\omega}$ extension by bounded-depth linear operators”, Adv. Math., 224 (2010), 1927–2021 | DOI | MR | Zbl
[23] Shvartsman P. A., “O sledakh funktsii klassa Zigmunda”, Sib. mat. zh., 28:5 (1987), 203–215 | MR | Zbl
[24] Shvartsman P., “The Whitney extension problem and Lipschitz selections of set-valued mappings in jet-spaces”, Trans. Amer. Math. Soc., 360 (2008), 5529–5550 | DOI | MR | Zbl
[25] Whitney H., “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR | Zbl
[26] Whitney H., “Differentiable functions defined in closed sets, I”, Trans. Amer. Math. Soc., 36 (1934), 369–387 | DOI | MR | Zbl