Trace Hardy--Sobolev inequalities in cones
Algebra i analiz, Tome 22 (2010) no. 6, pp. 200-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sharp constants are found for the trace Hardy-Sobolev inequalities in cones. The question as to whether these constants are attained is discussed.
Keywords: trace Sobolev inequality, trace Hardy inequality, sharp constants.
@article{AA_2010_22_6_a8,
     author = {A. I. Nazarov},
     title = {Trace {Hardy--Sobolev} inequalities in cones},
     journal = {Algebra i analiz},
     pages = {200--213},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a8/}
}
TY  - JOUR
AU  - A. I. Nazarov
TI  - Trace Hardy--Sobolev inequalities in cones
JO  - Algebra i analiz
PY  - 2010
SP  - 200
EP  - 213
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a8/
LA  - ru
ID  - AA_2010_22_6_a8
ER  - 
%0 Journal Article
%A A. I. Nazarov
%T Trace Hardy--Sobolev inequalities in cones
%J Algebra i analiz
%D 2010
%P 200-213
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a8/
%G ru
%F AA_2010_22_6_a8
A. I. Nazarov. Trace Hardy--Sobolev inequalities in cones. Algebra i analiz, Tome 22 (2010) no. 6, pp. 200-213. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a8/

[1] Allegretto W., Huang Y. X., “A Picone's identity for the $p$-Laplacian and applications”, Nonlinear Anal., 32 (1998), 819–830 | DOI | MR | Zbl

[2] Brenier Y., “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl

[3] Escobar J. F., “Sharp constant in a Sobolev trace inequality”, Indiana Univ. Math. J., 37 (1988), 687–698 | DOI | MR | Zbl

[4] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 5-e izd., Nauka, M., 1971

[5] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, 3-e izd., Nauka, M., 1965 | MR

[6] Kawohl B., “Symmetry results for functions yielding best constants in Sobolev-type inequalities”, Discrete Contin. Dynam. Systems, 6 (2000), 683–690 | DOI | MR | Zbl

[7] Lib E., Loss M., Analiz, Nauch. kn., Novosibirsk, 1998

[8] Lions P.-L., “The concentration-compactness principle in the calculus of variations. The locally compact case, I”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109–145 ; “II”, 223–283 | MR | Zbl | Zbl

[9] Mazya V. G., Prostranstva Soboleva, LGU, L., 1985

[10] McCann R. J., “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80:2 (1995), 309–323 | DOI | MR | Zbl

[11] Nazaret B., “Best constant in Sobolev trace inequalities on the half-space”, Nonlinear Anal., 65:10 (2006), 1977–1985 | DOI | MR | Zbl

[12] Nazarov A. I., “Dirichlet and Neumann problems to critical Emden–Fowler type equations”, J. Global Optim., 40 (2008), 289–303 | DOI | MR | Zbl

[13] Nazarov A. I., “Neravenstva Khardi–Soboleva v konuse”, Probl. mat. anal., 31, Tamara Rozhkovskaya, Novosibirsk, 2005, 39–46

[14] Nazarov A. I., “Ob “odnomernosti” ekstremali v neravenstve Fridrikhsa dlya sfericheskogo i ploskogo sloya”, Probl. mat. anal., 20, Tamara Rozhkovskaya, Novosibirsk, 2000, 171–190

[15] Palais R. S., “The principle of symmetric criticality”, Comm. Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl

[16] Polia D., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962