On asymptotic approximations of solutions of an equation with a~small parameter
Algebra i analiz, Tome 22 (2010) no. 6, pp. 109-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

A second order elliptic equation with a small parameter at one of the highest order derivatives is considered in a three-dimensional domain. The limiting equation is a collection of two-dimensional elliptic equations in two-dimensional domains depending on one parameter. By the method of matching of asymptotic expansions, a uniform asymptotic approximation of the solution of a boundary-value problem is constructed and justified up to an arbitrary power of a small parameter.
Keywords: asymptotic, boundary value problem, small parameter, matching of asymptotic expansions.
@article{AA_2010_22_6_a5,
     author = {A. M. Il'in and E. F. Lelikova},
     title = {On asymptotic approximations of solutions of an equation with a~small parameter},
     journal = {Algebra i analiz},
     pages = {109--126},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a5/}
}
TY  - JOUR
AU  - A. M. Il'in
AU  - E. F. Lelikova
TI  - On asymptotic approximations of solutions of an equation with a~small parameter
JO  - Algebra i analiz
PY  - 2010
SP  - 109
EP  - 126
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a5/
LA  - ru
ID  - AA_2010_22_6_a5
ER  - 
%0 Journal Article
%A A. M. Il'in
%A E. F. Lelikova
%T On asymptotic approximations of solutions of an equation with a~small parameter
%J Algebra i analiz
%D 2010
%P 109-126
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a5/
%G ru
%F AA_2010_22_6_a5
A. M. Il'in; E. F. Lelikova. On asymptotic approximations of solutions of an equation with a~small parameter. Algebra i analiz, Tome 22 (2010) no. 6, pp. 109-126. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a5/

[1] Levinson N., “The first boundary value problem for $\varepsilon\Delta u+A(x,y)u_x+B(x,y)u_y+C(x,y)u=f(x,y)$ for small $\varepsilon$”, Ann. of Math. (2), 51 (1950), 428–445 | DOI | MR | Zbl

[2] Oleinik O. A., “Ob uravneniyakh ellipticheskogo tipa s malym parametrom pri starshikh proizvodnykh”, Mat. sb., 31(73):1 (1952), 104–117 | MR | Zbl

[3] Kamenomostskaya S. L., “Pervaya kraevaya zadacha dlya uravnenii ellipticheskogo tipa s malym parametrom pri starshikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 19:5 (1955), 345–360 | MR | Zbl

[4] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5 (1957), 3–122 | MR | Zbl

[5] Trenogin V. A., “Razvitie i prilozheniya asimptoticheskogo metoda Lyusternika–Vishika”, Uspekhi mat. nauk, 25:4 (1970), 123–156 | MR | Zbl

[6] Kaplun S., Lagerstrom P. A., “Asymptotic expansions of Navier–Stokes solutions for small Reynolds numbers”, J. Math. Mech., 6 (1957), 585–593 | MR | Zbl

[7] Van-Daik M., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[8] Babich V. M., Kirpichnikova N. Ya., Metod pogranichnogo sloya v zadachakh difraktsii, LGU, L., 1974, 125 pp. | MR

[9] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Mat. sb., 96(138):4 (1975), 568–583 | MR | Zbl

[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[11] Lelikova E. F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. In-ta mat. i mekh. UrO RAN, 9, no. 1, 2003, 107–119

[12] Lelikova E. F., “Ob asimptotike resheniya odnogo uravneniya s malym parametrom”, Dokl. RAN, 429:4 (2009), 447–450 | MR | Zbl

[13] Lelikova E. F., “Ob asimptotike resheniya ellipticheskogo uravneniya vtorogo poryadka s malym parametrom pri odnoi iz starshikh proizvodnykh”, Tr. Mosk. mat. o-va, 71, 2009, 162–199

[14] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[15] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 351 pp. | MR | Zbl