Schr\"odinger operator on the axis with potentials depending on two parameters
Algebra i analiz, Tome 22 (2010) no. 6, pp. 50-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Schrödinger operator on the axis is considered; its localized potential is the sum of a small potential and certain potentials with contracting supports, which can increase unboundedly when their supports are contracted. Sufficient conditions are presented for the absence (or existence) of eigenvalues for such an operator. In the case where eigenvalues exist, their asymptotic expansion is constructed.
Keywords: Schrödinger operator, perturbation.
@article{AA_2010_22_6_a2,
     author = {R. R. Gadyl'shin and I. Kh. Khusnullin},
     title = {Schr\"odinger operator on the axis with potentials depending on two parameters},
     journal = {Algebra i analiz},
     pages = {50--66},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/}
}
TY  - JOUR
AU  - R. R. Gadyl'shin
AU  - I. Kh. Khusnullin
TI  - Schr\"odinger operator on the axis with potentials depending on two parameters
JO  - Algebra i analiz
PY  - 2010
SP  - 50
EP  - 66
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/
LA  - ru
ID  - AA_2010_22_6_a2
ER  - 
%0 Journal Article
%A R. R. Gadyl'shin
%A I. Kh. Khusnullin
%T Schr\"odinger operator on the axis with potentials depending on two parameters
%J Algebra i analiz
%D 2010
%P 50-66
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/
%G ru
%F AA_2010_22_6_a2
R. R. Gadyl'shin; I. Kh. Khusnullin. Schr\"odinger operator on the axis with potentials depending on two parameters. Algebra i analiz, Tome 22 (2010) no. 6, pp. 50-66. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/

[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[2] Simon B., “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97 (1976), 279–288 | DOI | MR | Zbl

[3] Klaus M., “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108 (1977), 288–300 | DOI | MR | Zbl

[4] Blankenbecler R., Goldberger M. L., Simon B., “The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians”, Ann. Phys., 108 (1977), 69–78 | DOI | MR

[5] Klaus M., Simon B., “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130 (1980), 251–281 | DOI | MR | Zbl

[6] Borisov D. I., Gadylshin R. R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. mat., 72:4 (2008), 37–66 | MR | Zbl

[7] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. i mat. fiz., 132:1 (2002), 97–104 | MR | Zbl

[8] Khusnullin I. Kh., “Vozmuschennaya kraevaya zadacha na sobstvennye znacheniya dlya operatora Shrëdingera na otrezke”, Zh. vychisl. mat. i mat. fiz., 50:4 (2010), 679–698

[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl