Mots-clés : perturbation.
@article{AA_2010_22_6_a2,
author = {R. R. Gadyl'shin and I. Kh. Khusnullin},
title = {Schr\"odinger operator on the axis with potentials depending on two parameters},
journal = {Algebra i analiz},
pages = {50--66},
year = {2010},
volume = {22},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/}
}
R. R. Gadyl'shin; I. Kh. Khusnullin. Schrödinger operator on the axis with potentials depending on two parameters. Algebra i analiz, Tome 22 (2010) no. 6, pp. 50-66. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a2/
[1] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR
[2] Simon B., “The bound state of weakly coupled Schrödinger operators in one and two dimensions”, Ann. Phys., 97 (1976), 279–288 | DOI | MR | Zbl
[3] Klaus M., “On the bound state of Schrödinger operators in one dimension”, Ann. Phys., 108 (1977), 288–300 | DOI | MR | Zbl
[4] Blankenbecler R., Goldberger M. L., Simon B., “The bound states of weakly coupled long-range one-dimensional quantum Hamiltonians”, Ann. Phys., 108 (1977), 69–78 | DOI | MR
[5] Klaus M., Simon B., “Coupling constant thresholds in nonrelativistic quantum mechanics. I. Short-range two-body case”, Ann. Phys., 130 (1980), 251–281 | DOI | MR | Zbl
[6] Borisov D. I., Gadylshin R. R., “O spektre periodicheskogo operatora s malym lokalizovannym vozmuscheniem”, Izv. RAN. Ser. mat., 72:4 (2008), 37–66 | MR | Zbl
[7] Gadylshin R. R., “O lokalnykh vozmuscheniyakh operatora Shrëdingera na osi”, Teor. i mat. fiz., 132:1 (2002), 97–104 | MR | Zbl
[8] Khusnullin I. Kh., “Vozmuschennaya kraevaya zadacha na sobstvennye znacheniya dlya operatora Shrëdingera na otrezke”, Zh. vychisl. mat. i mat. fiz., 50:4 (2010), 679–698
[9] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976 | MR | Zbl