The semiclassical limit of eigenfunctions of the Schr\"odinger equation and the Bohr--Sommerfeld quantization condition, revisited
Algebra i analiz, Tome 22 (2010) no. 6, pp. 270-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The semiclassical limit, as the Planck constant $\hbar$ tends to 0, of bound states of a quantum particle in a one-dimensional potential well is considered. The semiclassical asymptotics of eigenfunctions is justified, and the Bohr–Sommerfeld quantization condition is recovered.
Keywords: Schrödinger equation, potential well, Airy functions, Green–Lioville approximation, Bohr–Sommerfeld quantization condition, semiclassical Weyl formula.
@article{AA_2010_22_6_a11,
     author = {D. R. Yafaev},
     title = {The semiclassical limit of eigenfunctions of the {Schr\"odinger} equation and the {Bohr--Sommerfeld} quantization condition, revisited},
     journal = {Algebra i analiz},
     pages = {270--291},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a11/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - The semiclassical limit of eigenfunctions of the Schr\"odinger equation and the Bohr--Sommerfeld quantization condition, revisited
JO  - Algebra i analiz
PY  - 2010
SP  - 270
EP  - 291
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a11/
LA  - en
ID  - AA_2010_22_6_a11
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T The semiclassical limit of eigenfunctions of the Schr\"odinger equation and the Bohr--Sommerfeld quantization condition, revisited
%J Algebra i analiz
%D 2010
%P 270-291
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a11/
%G en
%F AA_2010_22_6_a11
D. R. Yafaev. The semiclassical limit of eigenfunctions of the Schr\"odinger equation and the Bohr--Sommerfeld quantization condition, revisited. Algebra i analiz, Tome 22 (2010) no. 6, pp. 270-291. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a11/

[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR

[2] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[4] Helffer B., Martinez A., Robert D., “Ergodicité et limite semi-classique”, Comm. Math. Phys., 109 (1987), 313–326 | DOI | MR | Zbl

[5] Helffer B., Robert D., “Puits de potentiel généralisés et asymptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl

[6] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 1, Mekhanika, Fizmatlit, M., 1958 | Zbl

[7] Olver F. W. J., Asymptotics and special functions, Acad. Press, New York–London, 1974 | MR | Zbl

[8] Simon B., “Semiclassical analysis of low lying eigenvalues. II. Tunneling”, Ann. of Math. (2), 120 (1984), 89–118 | DOI | MR | Zbl