How should we improve the ray-tracing method?
Algebra i analiz, Tome 22 (2010) no. 6, pp. 43-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility is discussed to improve the ray approximation up to an exact representation of a wave field by the Feynman–Kac probabilistic formula (this formula gives an exact solution of the Helmholtz equation in the form of the expectation of a certain functional on the space of Brownian random walks). Some examples illustrate an application of the solutions obtained to diffraction problems.
Keywords: diffraction, ray tracing method, stochastic equation, Feynman–Kac formula.
@article{AA_2010_22_6_a1,
     author = {B. V. Budaev},
     title = {How should we improve the ray-tracing method?},
     journal = {Algebra i analiz},
     pages = {43--49},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a1/}
}
TY  - JOUR
AU  - B. V. Budaev
TI  - How should we improve the ray-tracing method?
JO  - Algebra i analiz
PY  - 2010
SP  - 43
EP  - 49
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a1/
LA  - ru
ID  - AA_2010_22_6_a1
ER  - 
%0 Journal Article
%A B. V. Budaev
%T How should we improve the ray-tracing method?
%J Algebra i analiz
%D 2010
%P 43-49
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a1/
%G ru
%F AA_2010_22_6_a1
B. V. Budaev. How should we improve the ray-tracing method?. Algebra i analiz, Tome 22 (2010) no. 6, pp. 43-49. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a1/

[1] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR

[2] Freidlin M., Functional integration and partial differential equations, Ann. of Math. Stud., 109, Princeton Univ. Press, Princeton, NJ, 1985 | MR | Zbl

[3] Budaev B., Bogy D., “Diffraction by a convex polygon with side-wise constant impedance”, Wave Motion, 43 (2006), 631–645 | DOI | MR