A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$
Algebra i analiz, Tome 22 (2010) no. 6, pp. 3-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variational problem with obstacle is studied for a quadratic functional defined on vector-valued functions $u\colon\Omega\to\mathbb R^N$, $N>1$. It is assumed that the nondiagonal matrix that determines the quadratic form of the integrand depends on the solution and is “split”. The role of the obstacle is played by a closed (possibly, noncompact) set $\mathcal K$ in $\mathbb R^N$ or a smooth hypersurface $S$. It is assumed that $u(x)\in\mathcal K$ or $u(x)\in S$ a.e. on $\Omega$. This is a generalization of a scalar problem with an obstacle that goes out to the boundary of the domain. It is proved that the solutions of the variational problems in question are partially smooth in $\overline\Omega$ and that the singular set $\Sigma$ of the solution satisfies $H_{n-2}(\Sigma)=0$.
Keywords: variational problem, quadratic functional, nondiagonal matrix, Signorini condition.
@article{AA_2010_22_6_a0,
     author = {A. A. Arkhipova},
     title = {A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$},
     journal = {Algebra i analiz},
     pages = {3--42},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_6_a0/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$
JO  - Algebra i analiz
PY  - 2010
SP  - 3
EP  - 42
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_6_a0/
LA  - ru
ID  - AA_2010_22_6_a0
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$
%J Algebra i analiz
%D 2010
%P 3-42
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_6_a0/
%G ru
%F AA_2010_22_6_a0
A. A. Arkhipova. A problem with an obstacle that goes out to the boundary of the domain for a~class of quadratic functionals on~$\mathbb R^n$. Algebra i analiz, Tome 22 (2010) no. 6, pp. 3-42. http://geodesic.mathdoc.fr/item/AA_2010_22_6_a0/

[1] Giaquinta M., Giusti E., “On the regularity of the minima of variational integrals”, Acta Math., 148 (1982), 31–46 | DOI | MR | Zbl

[2] Giaquinta M., Giusti M., “The singular set of the minima of certain quadratic functionals”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 11 (1984), 45–55 | MR | Zbl

[3] Jost J., Meier M., “Boundary regularity for minima of certain quadratic functionals”, Math. Ann., 262 (1983), 549–561 | DOI | MR | Zbl

[4] Wiegner M., “Ein optimaler Regularitätssatz für schwache Lösungen gewisser elliptischer Systeme”, Math. Z., 147 (1976), 21–28 | DOI | MR | Zbl

[5] Hildebrandt S., Widman K.-O., “On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4 (1977), 145–178 | MR | Zbl

[6] Duzaar F., “Variational inequalities and harmonic mappings”, J. Reine Angew. Math., 374 (1987), 39–60 | MR | Zbl

[7] Duzaar F., Fuchs M., “Optimal regularity theorems for variational problems with obstacles”, Manuscripta Math., 56 (1986), 209–234 | DOI | MR | Zbl

[8] Fuchs M., “A regularity theorem for energy minimizing maps of Riemannian manifolds”, Comm. Partial Differential Equations, 12 (1987), 1309–1321 | DOI | MR | Zbl

[9] Fuchs M., “Some remarks on the boundary regularity for minima of variational problems with obstacles”, Manuscripta Math., 54 (1985), 107–119 | DOI | MR

[10] Fuchs M., Fusco N., “Partial regularity results for vector-valued functions which minimize certain functionals having nonquadratic growth under smooth side conditions”, J. Reine Angew. Math., 390 (1988), 67–78 | MR | Zbl

[11] Fuchs M., Wiegner M., “The regularity of minima of variational problems with graph obstacles”, Arch. Math. (Basel), 53 (1989), 75–81 | MR | Zbl

[12] Hildebrandt S., “Harmonic mappings of Riemannian manifolds”, Harmonic Mappings and Minimal Immersions (Montecatini, 1984), Lecture Notes in Math., 1161, Springer, Berlin, 1985, 1–117 | MR

[13] Hildebrandt S., Kaul H., Widman K.-O., “An existence theorem for harmonic mappings of Riemannian manifolds”, Acta Math., 138 (1977), 1–16 | DOI | MR | Zbl

[14] Hildebrandt S., Widman K.-O., “Variational inequalities for vector-valued functions”, J. Reine Angew. Math., 309 (1979), 191–220 | MR | Zbl

[15] Arkhipova A., “Variational problem with an obstacle in $\mathbb{R}^N$ for a class of quadratic functionals”, Zap. nauch. semin. POMI, 362, 2008, 15–47 | Zbl

[16] Beir ao da Veiga H., Conti F., “Equazioni ellittiche non lineari con ostacoli sottili”, Ann. Scuola Norm. Sup. Pisa (3), 26 (1972), 533–562 | MR | Zbl

[17] Caffarelli L., “Further regularity for the Signorini problem”, Comm. Partial Differential Equations, 4 (1979), 1067–1075 | DOI | MR | Zbl

[18] Frehse J., “On Signorini's problem and variational problems with thin obstacles”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 4 (1977), 343–362 | MR | Zbl

[19] Kinderlehrer D., “The smoothness of the solution of the boundary obstacle problem”, J. Math Pures Appl. (9), 60 (1981), 193–212 | MR | Zbl

[20] Uraltseva N. N., “Zadacha s odnostoronnimi usloviyami na granitse dlya kvazilineinogo ellipticheskogo uravneniya”, Probl. mat. anal., 6, LGU, L., 1977, 172–189

[21] Uraltseva N. N., “O regulyarnosti reshenii variatsionnykh neravenstv”, Uspekhi mat. nauk, 42:6 (1987), 151–174 | MR | Zbl

[22] Athanasopoulos I., Caffarelli L., “Optimal regularity of lower dimensional obstacle problems”, Zap. nauch. semin. POMI, 310, 2004, 49–66 | MR | Zbl

[23] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[24] Nečas J., “On regularity of solutions to nonlinear variational inequalities for second order elliptic systems”, Rend. Mat. (6), 8 (1975), 481–498 | MR

[25] Uraltseva N. N., “O silnykh resheniyakh obobschennoi zadachi Sinorini”, Sib. mat. zh., 19:5 (1978), 1204–1212 | MR

[26] Schumann R., “Zur Regularität einer Kontakt-Randwertaufgabe”, Z. Anal. Anwendungen, 9:5 (1990), 455–465 | MR | Zbl

[27] Arkhipova A. A., Uraltseva N. N., “Regulyarnost reshenii diagonalnykh ellipticheskikh sistem pri vypuklykh ogranicheniyakh na granitse oblasti”, Zap. nauch. semin. LOMI, 152, 1986, 5–17 | MR | Zbl

[28] Arkhipova A. A., Uraltseva N. N., “Regulyarnost reshenii variatsionnykh neravenstv s vypuklymi ogranicheniyami na granitse oblasti dlya nelineinykh operatorov s diagonalnoi glavnoi chastyu”, Vestn. Leningr. un-ta. Ser. 1, 1987, no. 3, 13–19 | MR | Zbl

[29] Arkhipova A. A., Uraltseva N. N., “Predelnaya gladkost reshenii variatsionnykh neravenstv pri vypuklykh ogranicheniyakh na granitse oblasti”, Zap. nauch. semin. LOMI, 163, 1987, 5–16 | MR | Zbl

[30] Arkhipova A., “Signorini-type problem in $\mathbb R^N$ for a class of quadratic functionals”, Nonlinear Partial Differential Equations and Related Topics, Amer. Math. Soc. Transl. (2), 229, Amer. Math. Soc., Providence, RI, 2010, 15–38

[31] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[32] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[33] Giaquinta M., Giusti E., “Nonlinear elliptic systems with quadratic growth”, Manuscripta Math., 24 (1978), 323–349 | DOI | MR | Zbl

[34] Arkhipova A., “O regulyarnosti reshenii kraevykh zadach dlya kvazilineinykh ellipticheskikh sistem s kvadratichnoi nelineinostyu”, Probl. mat. anal., 15, SPbGU, SPb., 1995, 47–69

[35] Chen Y., Struwe M., “Existence and partial regularity results for the heat flow for harmonic maps”, Math. Z., 201 (1989), 83–103 | DOI | MR | Zbl

[36] Widman K.-O., Inequalities for the Green functions of second order elliptic operators, Univ. Linköping, Inst. Math., 1972

[37] Widman K.-O., “Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations”, Math. Scand., 21 (1967), 17–37 (1968) | MR | Zbl

[38] Evans L.-C., “Partial regularity for stationary harmonic maps into spheres”, Arch. Rational Mech. Anal., 116 (1991), 101–113 | DOI | MR | Zbl

[39] Uraltseva N. N., “Otsenka na granitse oblasti proizvodnykh reshenii variatsionnykh neravenstv”, Probl. mat. anal., 10, LGU, L., 1986, 92–105 | MR