Spectral estimates for a~periodic fourth-order operator
Algebra i analiz, Tome 22 (2010) no. 5, pp. 1-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The operator $H=\frac{d^4}{dt^4}+\frac d{dt}p\frac d{dt}+q$ with periodic coefficients $p,q$ on the real line is considered. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. The following statements are proved: 1) the endpoints of gaps are periodic or antiperiodic eigenvalues or branch points of the Lyapunov function, and moreover, their asymptotic behavior at high energy is found; 2) the spectrum of $H$ at high energy has multiplicity two; 3) if $p$ belongs to a certain class, then for any $q$ the spectrum of $H$ has infinitely many gaps, and all branch points of the Lyapunov function, except for a finite number of them, are real and negative; 4) if $q=0$ and $p\to0$, then at the beginning of the spectrum there is a small spectral band of multiplicity 4, and its asymptotic behavior is found; the remaining spectrum has multiplicity 2.
Keywords: periodic differential operator, spectral bands, spectral asymptotics.
@article{AA_2010_22_5_a0,
     author = {A. V. Badanin and E. L. Korotyaev},
     title = {Spectral estimates for a~periodic fourth-order operator},
     journal = {Algebra i analiz},
     pages = {1--48},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_5_a0/}
}
TY  - JOUR
AU  - A. V. Badanin
AU  - E. L. Korotyaev
TI  - Spectral estimates for a~periodic fourth-order operator
JO  - Algebra i analiz
PY  - 2010
SP  - 1
EP  - 48
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_5_a0/
LA  - ru
ID  - AA_2010_22_5_a0
ER  - 
%0 Journal Article
%A A. V. Badanin
%A E. L. Korotyaev
%T Spectral estimates for a~periodic fourth-order operator
%J Algebra i analiz
%D 2010
%P 1-48
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_5_a0/
%G ru
%F AA_2010_22_5_a0
A. V. Badanin; E. L. Korotyaev. Spectral estimates for a~periodic fourth-order operator. Algebra i analiz, Tome 22 (2010) no. 5, pp. 1-48. http://geodesic.mathdoc.fr/item/AA_2010_22_5_a0/

[1] Badanin A., Korotyaev E., “Spectral asymptotics for periodic fourth-order operators”, Int. Math. Res. Not., 2005:45 (2005), 2775–2814 | DOI | MR | Zbl

[2] Badanin A., Brüning J., Korotyaev E., “The Lyapunov function for Schrödinger operators with a periodic $2\times2$ matrix potential”, J. Funct. Anal., 234:1 (2006), 106–126 | DOI | MR | Zbl

[3] Carlson R., “Eigenvalue estimates and trace formulas for the matrix Hill's equation”, J. Differential Equations, 167:1 (2000), 211–244 | DOI | MR | Zbl

[4] Carlson R., “A spectral transform for the matrix Hill's equation”, Rocky Mountain J. Math., 34:3 (2004), 869–895 | DOI | MR | Zbl

[5] Chelkak D., Korotyaev E., “Spectral estimates for Schrödinger operators with periodic matrix potentials on the real line”, Int. Math. Res. Not., 2006, Art. ID 60314, 41 pp. | MR

[6] Clark S., Gesztesy F., “Weyl–Titchmarsh $M$-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators”, Trans. Amer. Math. Soc., 354:9 (2002), 3475–3534 | DOI | MR | Zbl

[7] Clark S., Gesztesy F., Holden H., Levitan B., “Borg-type theorems for matrix-valued Schrödinger and Dirac operators”, J. Differential Equations, 167 (2000), 181–210 | DOI | MR | Zbl

[8] Danford N., Shvarts Dzh. T., Lineinye operatory, v. 2, Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966

[9] Dubrovin B. A., Krichever I. M., Novikov S. P., “Integriruemye sistemy. I”, Dinamicheskie sistemy – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 4, VINITI, M., 1985, 179–277 | MR | Zbl

[10] Gelfand I. M., Lidskii V. B., “O strukture oblastei ustoichivosti lineinykh kanonicheskikh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Uspekhi mat. nauk, 10:1 (1955), 3–40 | MR | Zbl

[11] Hoppe J., Laptev A., Östensson J., “Solitons and the removal of eigenvalues for fourth-order differential operators”, Int. Math. Res. Not., 2006, Art ID 85050, 14 pp. | MR

[12] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[13] Korotyaev E., “Spectral estimates for matrix-valued periodic Dirac operators”, Asymptot. Anal., 59:3–4 (2008), 195–225 | MR | Zbl

[14] Korotyaev E., “Inverse resonance scattering on the real line”, Inverse Problems, 21 (2005), 325–341 | DOI | MR | Zbl

[15] Korotyaev E., “Conformal spectral theory for the monodromy matrix”, Trans. Amer. Math. Soc., 362 (2010), 3435–3462 | DOI | MR | Zbl

[16] Korotyaev E., Kutsenko A., “Borg-type uniqueness theorems for periodic Jacobi operators with matrix-valued coefficients”, Proc. Amer. Math. Soc., 137 (2009), 1989–1996 | DOI | MR | Zbl

[17] Korotyaev E., Kutsenko A., “Lyapunov functions of periodic matrix-valued Jacobi operators”, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. Ser. 2, 225, Amer. Math. Soc., Providence, RI, 2008, 117–131 | MR | Zbl

[18] Korotyaev E., Lobanov I., “Schrödinger operators on zigzag nanotubes”, Ann. Henri Poincaré, 8 (2007), 1151–1176 | DOI | MR | Zbl

[19] Krein M. G., “Osnovnye polozheniya teorii $\lambda$-zon ustoichivosti kanonicheskoi sistemy lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami”, Pamyati A. A. Andronova, AN SSSR, M., 1955, 413–498

[20] McKean H., “Boussinesq's equation on the circle”, Com. Pure Appl. Math., 34 (1981), 599–691 | DOI | MR | Zbl

[21] Mikhailets V., Molyboga V., “Singular eigenvalue problems on the circle”, Methods Funct. Anal. Topology, 10:3 (2004), 44–53 | MR | Zbl

[22] Mikhailets V., Molyboga V., “Uniform estimates for the semi-periodic eigenvalues of the singular differential operators”, Methods Funct. Anal. Topology, 10:4 (2004), 30–57 | MR | Zbl

[23] Maksudov F. G., Veliev O. A., “Spektralnyi analiz differentsialnykh operatorov s periodicheskimi matrichnymi koeffitsientami”, Differents. uravneniya, 25:3 (1989), 400–409 | MR

[24] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977, 331 pp. | MR

[25] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR

[26] Papanicolaou V. G., “The spectral theory of the vibrating periodic beam”, Comm. Math. Phys., 170 (1995), 359–373 | DOI | MR | Zbl

[27] Papanicolaou V. G., “The periodic Euler–Bernoulli equation”, Trans. Amer. Math. Soc., 355:9 (2003), 3727–3759 | DOI | MR | Zbl

[28] Papanicolaou V. G., Kravvaritis D., “The Floquet theory of the periodic Euler–Bernoulli equation”, J. Differential Equations, 150 (1998), 24–41 | DOI | MR | Zbl

[29] Pöschel J., Trubowitz E., “Inverse spectral theory”, Pure Appl. Math., 130, Acad. Press, Boston, MA, 1987 | MR | Zbl

[30] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[31] Tkachenko V., “Spectrum of 1-d selfadjoint periodic differential operator of order 4”, Advances in Differential Equations and Mathematical Physics (Birmingham, AL, 2002), Contemp. Math., 327, Amer. Math. Soc., Providence, RI, 2003, 331–340 | MR | Zbl

[32] Tkachenko V., “Expansions associated with 1-d periodic differential operators of order 4”, Recent Advances in Differential Equations and Mathematical Physics, Contemp. Math., 412, Amer. Math. Soc., Providence, RI, 2006, 283–296 | MR | Zbl

[33] Tkachenko V., “Razlozheniya po sobstvennym funktsiyam, svyazannye s odnomernymi periodicheskimi differentsialnymi operatorami poryadka $2n$”, Funkts. anal. i ego pril., 41:1 (2007), 66–89 | MR | Zbl

[34] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 718 pp. | MR

[35] Zworski, “Distribution of poles for scattering on the real line”, J. Funct. Anal., 73 (1987), 277–296 | DOI | MR | Zbl