The quasinormed Neumann--Schatten ideals and embedding theorems for the generalized Lions--Peetre spaces of means
Algebra i analiz, Tome 22 (2010) no. 4, pp. 214-231.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the spaces $\varphi(X_0,X_1)_{p_0,p_1}$, which generalize the spaces of means introduced by Lions and Peetre to the case of functional parameters, necessary and sufficient conditions are found for embedding when all parameters (the function $\varphi$ and the numbers $1\leq p_0$, $p_1\leq\infty)$ vary. The proof involves a description of generalized Lions–Peetre spaces in terms of orbits and co-orbits of von Neumann–Schatten ideals (including quasinormed ideals).
Keywords: embedding theorems, method of means, functional parameter, generalized spaces.
@article{AA_2010_22_4_a6,
     author = {V. I. Ovchinnikov},
     title = {The quasinormed {Neumann--Schatten} ideals and embedding theorems for the generalized {Lions--Peetre} spaces of means},
     journal = {Algebra i analiz},
     pages = {214--231},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_4_a6/}
}
TY  - JOUR
AU  - V. I. Ovchinnikov
TI  - The quasinormed Neumann--Schatten ideals and embedding theorems for the generalized Lions--Peetre spaces of means
JO  - Algebra i analiz
PY  - 2010
SP  - 214
EP  - 231
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_4_a6/
LA  - ru
ID  - AA_2010_22_4_a6
ER  - 
%0 Journal Article
%A V. I. Ovchinnikov
%T The quasinormed Neumann--Schatten ideals and embedding theorems for the generalized Lions--Peetre spaces of means
%J Algebra i analiz
%D 2010
%P 214-231
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_4_a6/
%G ru
%F AA_2010_22_4_a6
V. I. Ovchinnikov. The quasinormed Neumann--Schatten ideals and embedding theorems for the generalized Lions--Peetre spaces of means. Algebra i analiz, Tome 22 (2010) no. 4, pp. 214-231. http://geodesic.mathdoc.fr/item/AA_2010_22_4_a6/

[1] Aronszajn N., Gagliardo E., “Interpolation spaces and interpolation methods”, Ann. Mat. Pura Appl. (4), 68 (1965), 51–117 | DOI | MR | Zbl

[2] Brudnyi Yu. A., Krugljak N. Ya., Interpolation functors and interpolation spaces, v. I, North-Holland Math. Library, 47, North-Holland, Amsterdam, 1991 | MR | Zbl

[3] Brudnyi Yu. A., Shteinberg A., “Calderón couples of Lipschitz spaces”, J. Funct. Anal., 131 (1995), 459–498 | DOI | MR | Zbl

[4] Dikarev V. A., Matsaev V. I., “Tochnaya interpolyatsionnaya teorema”, Dokl. AN SSSR, 168:5 (1966), 986–988 | MR | Zbl

[5] Dmitriev A. A., Semenov E. M., “Optimalnost interpolyatsionnoi teoremy M. Rissa v verkhnem treugolnike”, Dokl. AN SSSR, 258:6 (1981), 1298–1300 | MR | Zbl

[6] Janson S., “Minimal and maximal methods of interpolation”, J. Funct. Anal., 44 (1981), 50–73 | DOI | MR | Zbl

[7] Kravishvili E. D., “Metod srednikh s proizvolnym funktsionalnym parametrom”, Tr. mat. fak. Voronezh. gos. un-ta (Nov. ser.), 2002, no. 7, 58–72

[8] Kravishvili E. D., Ovchinnikov V. I., “Opisanie interpolyatsionnykh orbit idealov Neimana–Shattena, deistvuyuschikh v gilbertovykh parakh, i teoremy vlozheniya”, Dokl. RAN, 393:1 (2003), 10–13 | MR

[9] Lions J.-L., Peetre J., “Sur une classe d'espaces d'interpolation”, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5–68 | DOI | MR | Zbl

[10] Milman M., “The computation of the $K$-functional for couples of rearrangement invariant spaces”, Resultate Math., 5 (1982), 174–176 | MR | Zbl

[11] Ovchinnikov V. I., “Tochnaya interpolyatsionnaya teorema v prostranstvakh $L_p$”, Dokl. AN SSSR, 272:2 (1983), 300–303 | MR | Zbl

[12] Ovchinnikov V. I., “Interpolyatsionnye orbity v parakh prostranstv Lebega”, Funkts. anal. i ego pril., 39:1 (2005), 56–68 | MR | Zbl

[13] Ovchinnikov V. I., “The method of orbits in interpolation theory”, Math. Rep., 1:2 (1984), 349–516 | MR

[14] Ovchinnikov V. I., “Interpolation orbits in couples of $L_p$ spaces”, C. R. Math. Acad. Sci. Paris, 334 (2002), 881–884 | MR | Zbl

[15] Ovchinnikov V. I., “Criteria for embedding of spaces constructed by the method of means with arbitrary quasi-concave functional parameters”, J. Funct. Anal., 228 (2005), 234–243 | DOI | MR | Zbl

[16] Sedaev A. A., “Opisanie interpolyatsionnykh prostranstv pary $(L^p_{\alpha_0},L^p_{\alpha_1})$ i nekotorye rodstvennye voprosy”, Dokl. AN SSSR, 209:4 (1973), 798–800 | MR | Zbl

[17] Riesz M., “Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires”, Acta Math., 49 (1926), 465–497 | DOI | MR