Gaudin Hamiltonians generate the Bethe algebra of a~tensor power of the vector representation of~$\frak{gl}_N$
Algebra i analiz, Tome 22 (2010) no. 3, pp. 177-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Gaudin Hamiltonians $H_1,\dots,H_n$ generate the Bethe algebra of the $n$-fold tensor power of the vector representation of $\frak{gl}_N$. Surprisingly, the formula for the generators of the Bethe algebra in terms of the Gaudin Hamiltonians does not depend on $N$. Moreover, this formula coincides with Wilson's formula for the stationary Baker–Akhiezer function on the adelic Grassmannian.
Keywords: Gaudin model, Bethe algebra, Calogero–Moser space.
@article{AA_2010_22_3_a8,
     author = {E. Mukhin and V. Tarasov and A. Varchenko},
     title = {Gaudin {Hamiltonians} generate the {Bethe} algebra of a~tensor power of the vector representation of~$\frak{gl}_N$},
     journal = {Algebra i analiz},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a8/}
}
TY  - JOUR
AU  - E. Mukhin
AU  - V. Tarasov
AU  - A. Varchenko
TI  - Gaudin Hamiltonians generate the Bethe algebra of a~tensor power of the vector representation of~$\frak{gl}_N$
JO  - Algebra i analiz
PY  - 2010
SP  - 177
EP  - 190
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a8/
LA  - en
ID  - AA_2010_22_3_a8
ER  - 
%0 Journal Article
%A E. Mukhin
%A V. Tarasov
%A A. Varchenko
%T Gaudin Hamiltonians generate the Bethe algebra of a~tensor power of the vector representation of~$\frak{gl}_N$
%J Algebra i analiz
%D 2010
%P 177-190
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a8/
%G en
%F AA_2010_22_3_a8
E. Mukhin; V. Tarasov; A. Varchenko. Gaudin Hamiltonians generate the Bethe algebra of a~tensor power of the vector representation of~$\frak{gl}_N$. Algebra i analiz, Tome 22 (2010) no. 3, pp. 177-190. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a8/

[1] Babujian H. M., “Off-shell Bethe ansatz equations and $N$-point correlators in the $\operatorname{SU}(2)$ WZNW theory”, J. Phys. A, 26:23 (1993), 6981–6990 | DOI | MR | Zbl

[2] Chervov A., Talalaev D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, Preprint, 2006, 54 pp., arXiv: hep-th/0604128

[3] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166:1 (1994), 27–62 | DOI | MR | Zbl

[4] Felder G., Markov Y., Tarasov V., Varchenko A., “Differential equations compatible with KZ equations”, Math. Phys. Anal. Geom., 3:2 (2000), 139–177 | DOI | MR | Zbl

[5] Gaudin M., “Diagonalisation d'une classe d'Hamiltoniens de spin”, J. Physique, 37:10 (1976), 1089–1098 | MR

[6] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983, 331 pp. | MR | Zbl

[7] Kulish P. P., Sklyanin E. K., “Quantum spectral transform method. Recent developments”, Lecture Notes in Phys., 151, Springer, Berlin–New York, 1982, 61–119 | MR

[8] Mukhin E., Tarasov V., Varchenko A., “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech. Theory Exp., 2006, no. 8, P08002, 44 pp. | MR

[9] Mukhin E., Tarasov V., Varchenko A., “A generalization of the Capelli identity”, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser Boston Inc., Boston, MA, 2009, 383–398 | MR | Zbl

[10] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22:4 (2009), 909–940 | DOI | MR

[11] Mukhin E., Tarasov V., Varchenko A., “Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel”, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 060, 31 pp. | MR | Zbl

[12] Mukhin E., Tarasov V., Varchenko A., “Spaces of quasi-exponentials and representations of $\mathfrak{gl}_N$”, J. Phys. A, 41 (2008), 194017, 28 pp. | DOI | MR | Zbl

[13] Mukhin E., Tarasov V., Varchenko A., Bethe algebra, Calogero–Moser space and Cherednik algebra, Preprint, 2009, 24 pp., arXiv: 0906.5185

[14] Reshetikhin N., Varchenko A., “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology, 4, Int. Press, Cambridge, MA, 1995, 293–322 | MR

[15] Schechtman V., Varchenko A., “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106:1 (1991), 139–194 | DOI | MR | Zbl

[16] Talalaev D., Quantization of the Gaudin system, Preprint, 2004, 19 pp., arXiv: hep-th/0404153 | Zbl

[17] Weyl H., The classical groups. Their invariants and representations, Princeton Univ. Press, Princeton, NJ, 1939 | MR

[18] Wilson G., “Collisions of Calogero–Moser particles and an adelic Grassmannian”, Invent. Math., 133:1 (1998), 1–41 | DOI | MR | Zbl