Asymptotic behavior of eigenfunctions of the three-particle Schrödinger operator. II. Charged one-dimensional particles
Algebra i analiz, Tome 22 (2010) no. 3, pp. 60-79
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of three one-dimensional quantum particles with Coulomb pairwise interaction is treated. A scattered plane wave type asymptotic description at infinity in the configuration space of generalized eigenfunctions is obtained. Though remaining at a heuristic level, the constructions of the paper may serve as a basis for rigorous proofs of the results.
Keywords:
quantum scattering, three-particle scattering
Mots-clés : Coulomb interaction, one-dimensional particles.
Mots-clés : Coulomb interaction, one-dimensional particles.
@article{AA_2010_22_3_a3,
author = {V. S. Buslaev and S. B. Levin},
title = {Asymptotic behavior of eigenfunctions of the three-particle {Schr\"odinger} {operator.~II.} {Charged} one-dimensional particles},
journal = {Algebra i analiz},
pages = {60--79},
year = {2010},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a3/}
}
TY - JOUR AU - V. S. Buslaev AU - S. B. Levin TI - Asymptotic behavior of eigenfunctions of the three-particle Schrödinger operator. II. Charged one-dimensional particles JO - Algebra i analiz PY - 2010 SP - 60 EP - 79 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a3/ LA - ru ID - AA_2010_22_3_a3 ER -
V. S. Buslaev; S. B. Levin. Asymptotic behavior of eigenfunctions of the three-particle Schrödinger operator. II. Charged one-dimensional particles. Algebra i analiz, Tome 22 (2010) no. 3, pp. 60-79. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a3/
[1] Buslaev V. S., Levin S. B., “Asymptotic behavior of the eigenfunctions of the many-particle Schrödinger operator. I. One-dimensional particles”, Spectral Theory of Differential Operators, Amer. Math. Soc. Transl. (2), 225, Amer. Math. Soc., Providence, RI, 2008, 55–71 | MR | Zbl
[2] Buslaev V. S., Levin S. B., Neittaannmäki P., Ojala T., New approach to numerical computation of the eigenfunctions of the continuous spectrum of three-particle Schrödinger operator. I. One-dimensional particles, short-range pair potentials, 2009, arXiv: 0909.4529v1[math-ph]
[3] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. Mat. in-ta AN SSSR, 69, 1963 | MR | Zbl