Mots-clés : coadjoint representation
@article{AA_2010_22_3_a11,
author = {A. N. Panov},
title = {Invariants of coadjoint representations of regular factors},
journal = {Algebra i analiz},
pages = {222--247},
year = {2010},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/}
}
A. N. Panov. Invariants of coadjoint representations of regular factors. Algebra i analiz, Tome 22 (2010) no. 3, pp. 222-247. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/
[1] Kirillov A. A., Lektsii po metodu orbit, Nauch. kniga, Novosibirsk, 2002
[2] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl
[3] Panov A. N., “Ob indekse nekotorykh nilpotentnykh algebr Li”, Sovrem. mat. i ee pril., 60 (2008), 123–131
[4] Panov A. N., “Diagrammnyi metod v issledovanii koprisoedinennykh orbit Li”, Vestn. SamGU. Estestvennonauch. ser., 2008, no. 6(65), 139–151
[5] Ignatev M. V., Panov A. N., “Koprisoedinennye orbity dlya gruppy $\operatorname{UT}(7,K)$”, Fundam. prikl. mat., 13:5 (2007), 127–159 | MR
[6] Panov A. N., “Involyutsii v $S_n$ i assotsiirovannye koprisoedinennye orbity”, Zap. nauch. semin. POMI, 349, 2007, 150–173
[7] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR
[8] Parshall B., Wang J-P., Quantum linear groups, Mem. Amer. Math. Soc., 89, no. 439, 1991, 157 pp. | MR
[9] Gavarini F., “Presentation by Borel subalgebras and Chevalley generations for quantum enveloping algebras”, Proc. Edinb. Math. Soc. (2), 49 (2006), 291–308 | DOI | MR | Zbl
[10] Jantzen J. G., Lectures on quantum groups, Grad. Stud. in Math., 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl