Invariants of coadjoint representations of regular factors
Algebra i analiz, Tome 22 (2010) no. 3, pp. 222-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generators are found for the field of invariants of coadjoint representations for the Lie algebras that are factors of a unitriangular Lie algebra by some regular ideal.
Keywords: Lie algebra, coadjoint representation, algebra of invariants.
@article{AA_2010_22_3_a11,
     author = {A. N. Panov},
     title = {Invariants of coadjoint representations of regular factors},
     journal = {Algebra i analiz},
     pages = {222--247},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Invariants of coadjoint representations of regular factors
JO  - Algebra i analiz
PY  - 2010
SP  - 222
EP  - 247
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/
LA  - ru
ID  - AA_2010_22_3_a11
ER  - 
%0 Journal Article
%A A. N. Panov
%T Invariants of coadjoint representations of regular factors
%J Algebra i analiz
%D 2010
%P 222-247
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/
%G ru
%F AA_2010_22_3_a11
A. N. Panov. Invariants of coadjoint representations of regular factors. Algebra i analiz, Tome 22 (2010) no. 3, pp. 222-247. http://geodesic.mathdoc.fr/item/AA_2010_22_3_a11/

[1] Kirillov A. A., Lektsii po metodu orbit, Nauch. kniga, Novosibirsk, 2002

[2] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, Uspekhi mat. nauk, 17:4 (1962), 57–110 | MR | Zbl

[3] Panov A. N., “Ob indekse nekotorykh nilpotentnykh algebr Li”, Sovrem. mat. i ee pril., 60 (2008), 123–131

[4] Panov A. N., “Diagrammnyi metod v issledovanii koprisoedinennykh orbit Li”, Vestn. SamGU. Estestvennonauch. ser., 2008, no. 6(65), 139–151

[5] Ignatev M. V., Panov A. N., “Koprisoedinennye orbity dlya gruppy $\operatorname{UT}(7,K)$”, Fundam. prikl. mat., 13:5 (2007), 127–159 | MR

[6] Panov A. N., “Involyutsii v $S_n$ i assotsiirovannye koprisoedinennye orbity”, Zap. nauch. semin. POMI, 349, 2007, 150–173

[7] Diksme Zh., Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[8] Parshall B., Wang J-P., Quantum linear groups, Mem. Amer. Math. Soc., 89, no. 439, 1991, 157 pp. | MR

[9] Gavarini F., “Presentation by Borel subalgebras and Chevalley generations for quantum enveloping algebras”, Proc. Edinb. Math. Soc. (2), 49 (2006), 291–308 | DOI | MR | Zbl

[10] Jantzen J. G., Lectures on quantum groups, Grad. Stud. in Math., 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl