Fractional moments of automorphic $L$-functions
Algebra i analiz, Tome 22 (2010) no. 2, pp. 204-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper and lower bounds for fractional moments of automorphic $L$-functions are found.
Keywords: symmetric square $L$-function, fractional moment, convexity.
@article{AA_2010_22_2_a6,
     author = {O. M. Fomenko},
     title = {Fractional moments of automorphic $L$-functions},
     journal = {Algebra i analiz},
     pages = {204--224},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a6/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Fractional moments of automorphic $L$-functions
JO  - Algebra i analiz
PY  - 2010
SP  - 204
EP  - 224
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a6/
LA  - ru
ID  - AA_2010_22_2_a6
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Fractional moments of automorphic $L$-functions
%J Algebra i analiz
%D 2010
%P 204-224
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a6/
%G ru
%F AA_2010_22_2_a6
O. M. Fomenko. Fractional moments of automorphic $L$-functions. Algebra i analiz, Tome 22 (2010) no. 2, pp. 204-224. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a6/

[1] Heath-Brown D. R., “Fractional moments of the Riemann zeta-function”, J. London Math. Soc. (2), 24 (1981), 65–78 | DOI | MR | Zbl

[2] Jutila M., “On the value distribution of the zeta-function on the critical line”, Bull. London Math. Soc., 15 (1983), 513–518 | DOI | MR | Zbl

[3] Odoni R. W. K., “A problem of Rankin on sums of powers of cusp-form coefficients”, J. London Math. Soc. (2), 44 (1991), 203–217 | DOI | MR | Zbl

[4] Gelbart S., Jacquet H., “A relation between automorphic representations of $\mathrm{GL}(2)$ and $\mathrm{GL}(3)$”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 471–542 | MR | Zbl

[5] Bump D., Ginzburg D., “Symmetric square $L$-functions on $\mathrm{GL}(r)$”, Ann. of Math. (2), 136 (1992), 137–205 | DOI | MR | Zbl

[6] Wirsing E., “Das asymptotische Verhalten von Summen über multiplikative Funktionen”, Math. Ann., 143 (1961), 75–102 | DOI | MR | Zbl

[7] Gabriel R. M., “Some results concerning the integrals of moduli of regular functions along certain curves”, J. London Math. Soc., 2 (1927), 112–117 | DOI | Zbl

[8] Montgomery H. L., Vaughan R. C., “Hilbert's inequality”, J. London Math. Soc. (2), 8 (1974), 73–82 | DOI | MR | Zbl

[9] Good A., “The square mean of Dirichlet series associated with cusp forms”, Mathematika, 29 (1982), 278–295 | DOI | MR | Zbl

[10] Laurinc̆ikas A., “On moments of zeta-functions associated to certain cusp forms”, Algebra i teoriya chisel: sovremennye problemy i prilozheniya, Tez. dokl. 6-i Mezhdunar. konf., posvyaschennoi 100-letiyu N. G. Chudakova (Saratov, 13–17 sent., 2004), Saratov, 2004, 136–137

[11] Moreno C. J., “The Hoheisel phenomenon for generalized Dirichlet series”, Proc. Amer. Math. Soc., 40 (1973), 47–51 | MR

[12] Sankaranarayanan A., “Fundamental properties of symmetric square $L$-functions, I”, Illinois J. Math., 46 (2002), 23–43 | MR | Zbl

[13] Koike M., “Higher reciprocity law, modular forms of weight 1 and elliptic curves”, Nagoya Math. J., 98 (1985), 109–115 | MR | Zbl

[14] Fomenko O. M., “Srednie znacheniya, svyazannye s dzeta-funktsiei Dedekinda”, Zap. nauch. semin. POMI, 350, 2007, 187–198

[15] Heath-Brown D. R., “The twelfth power moment of the Riemann zeta-function”, Quart. J. Math. Oxford (2), 29 (1978), 443–462 | DOI | MR | Zbl

[16] Jutila M., Lectures on a method in the theory of exponential sums, Tata Inst. Fund. Res. Lecture on Math. and Phys., 80, Tata Inst. Fund. Res., Bombay, 1987 | MR

[17] Zamarys S., “On fractional moments of Dirichlet $L$-functons, II”, Liet. Mat. Rink., 46:4 (2006), 606–621 | MR | Zbl