Nondensity of the orbital shadowing property in $C^1$-topology
Algebra i analiz, Tome 22 (2010) no. 2, pp. 127-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

The orbital shadowing property (OSP) of discrete dynamical systems on smooth closed manifolds is considered. The nondensity of OSP with respect to the $C^1$-topology is proved. The proof uses the method of skew products developed by Ilyashenko and Gorodetskiĭ.
Keywords: shadowing, generic property, skew product, $C^1$-topology.
@article{AA_2010_22_2_a3,
     author = {A. V. Osipov},
     title = {Nondensity of the orbital shadowing property in $C^1$-topology},
     journal = {Algebra i analiz},
     pages = {127--163},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a3/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - Nondensity of the orbital shadowing property in $C^1$-topology
JO  - Algebra i analiz
PY  - 2010
SP  - 127
EP  - 163
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a3/
LA  - ru
ID  - AA_2010_22_2_a3
ER  - 
%0 Journal Article
%A A. V. Osipov
%T Nondensity of the orbital shadowing property in $C^1$-topology
%J Algebra i analiz
%D 2010
%P 127-163
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a3/
%G ru
%F AA_2010_22_2_a3
A. V. Osipov. Nondensity of the orbital shadowing property in $C^1$-topology. Algebra i analiz, Tome 22 (2010) no. 2, pp. 127-163. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a3/

[1] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye novye grubye svoistva invariantnykh mnozhestv i attraktorov dinamicheskikh sistem”, Funkts. anal. i ego pril., 33:2 (1999), 16–30 | MR | Zbl

[2] Gorodetskii A. S., Ilyashenko Yu. S., “Nekotorye svoistva kosykh proizvedenii nad podkovoi i solenoidom”, Tr. Mat. in-ta RAN, 231, 2000, 96–118 | MR | Zbl

[3] Gorodetskii A. S., Minimalnye attraktory i chastichno giperbolicheskie invariantnye mnozhestva dinamicheskikh sistem, Dis., MGU, mekh.-mat. fak., M., 2001

[4] Gorodetskii A. S., “Regulyarnost tsentralnykh sloev chastichno giperbolicheskikh mnozhestv i prilozheniya”, Izv. RAN. Ser. mat., 70:6 (2006), 19–44 | MR | Zbl

[5] Kleptsyn V. A., Nalskii M. B., “Ustoichivost suschestvovaniya negiperbolicheskikh mer dlya $C^1$-diffeomorfizmov”, Funkts. anal. i ego pril., 41:4 (2007), 30–45 | MR | Zbl

[6] Pilyugin S. Yu., Prostranstva dinamicheskikh sistem, In-t kompyuter. issled., M.–Izhevsk, 2008

[7] Bonatti Ch., Diaz L. J., Turcat G., “Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques”, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 587–592 | MR | Zbl

[8] Crovisier S., “Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms”, Publ. Math. Inst. Hautes Études Sci., 104 (2006), 87–141 | MR | Zbl

[9] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl

[10] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[11] Palmer K., Shadowing in dynamical systems. Theory and applications, Math. Appl., 501, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[12] Pilyugin S. Yu., Rodionova A. A., Sakai K., “Orbital and weak shadowing properties”, Discrete Contin. Dyn. Syst., 9 (2003), 287–308 | DOI | MR | Zbl

[13] Pilyugin S. Yu., Shadowing in dynamical systems, Lecture Notes in Math., 1706, Springer-Verlag, Berlin, 1999 | MR | Zbl

[14] Pilyugin S. Yu., Sakai K., Tarakanov O. A., “Transversality properties and $C^1$-open sets of diffeomorphisms with weak shadowing”, Discrete Contin. Dyn. Syst., 16:4 (2006), 871–882 | DOI | MR | Zbl

[15] Pilyugin S. Yu., Plamenevskaya O. B., “Shadowing is generic”, Topology Appl., 97 (1999), 253–266 | DOI | MR | Zbl