To the theory of infinitely differentiable semigroups of operators
Algebra i analiz, Tome 22 (2010) no. 2, pp. 1-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a linear relation (multivalued linear operator) with certain growth restrictions on the resolvent, an infinitely differentiable semigroup of operators is constructed. It is shown that the initial linear relation is a generator of this semigroup. The results obtained are intimately related to certain results in the monograph “Functional analysis and semi-groups” by Hille and Phillips.
Keywords: linear relation, infinitely differentiable semigroup of operators, generator of a semigroup, resolvent set.
@article{AA_2010_22_2_a0,
     author = {M. S. Bichegkuev},
     title = {To the theory of infinitely differentiable semigroups of operators},
     journal = {Algebra i analiz},
     pages = {1--13},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/}
}
TY  - JOUR
AU  - M. S. Bichegkuev
TI  - To the theory of infinitely differentiable semigroups of operators
JO  - Algebra i analiz
PY  - 2010
SP  - 1
EP  - 13
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/
LA  - ru
ID  - AA_2010_22_2_a0
ER  - 
%0 Journal Article
%A M. S. Bichegkuev
%T To the theory of infinitely differentiable semigroups of operators
%J Algebra i analiz
%D 2010
%P 1-13
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/
%G ru
%F AA_2010_22_2_a0
M. S. Bichegkuev. To the theory of infinitely differentiable semigroups of operators. Algebra i analiz, Tome 22 (2010) no. 2, pp. 1-13. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/

[1] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[2] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, M. Dekker, New York, 1999 | MR | Zbl

[3] Cross R., Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, M. Dekker, New York, 1998 | MR | Zbl

[4] Baskakov A. G., “Lineinye otnosheniya kak generatory polugrupp operatorov”, Mat. zametki, 84:2 (2008), 175–192 | MR

[5] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovrem. mat. Fundam. napravleniya, 9, 2004, 3–151 | MR | Zbl

[6] Baskakov A. G., Chernyshov K. I., “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Mat. sb., 193:11 (2002), 3–42 | MR | Zbl

[7] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[8] Bichegkuev M. S., “Ob oslablennoi zadache Koshi dlya lineinogo differentsialnogo vklyucheniya”, Mat. zametki, 79:4 (2006), 483–487 | MR | Zbl