Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_2_a0, author = {M. S. Bichegkuev}, title = {To the theory of infinitely differentiable semigroups of operators}, journal = {Algebra i analiz}, pages = {1--13}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/} }
M. S. Bichegkuev. To the theory of infinitely differentiable semigroups of operators. Algebra i analiz, Tome 22 (2010) no. 2, pp. 1-13. http://geodesic.mathdoc.fr/item/AA_2010_22_2_a0/
[1] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962
[2] Favini A., Yagi A., Degenerate differential equations in Banach spaces, Monogr. Textbooks Pure Appl. Math., 215, M. Dekker, New York, 1999 | MR | Zbl
[3] Cross R., Multivalued linear operators, Monogr. Textbooks Pure Appl. Math., 213, M. Dekker, New York, 1998 | MR | Zbl
[4] Baskakov A. G., “Lineinye otnosheniya kak generatory polugrupp operatorov”, Mat. zametki, 84:2 (2008), 175–192 | MR
[5] Baskakov A. G., “Teoriya predstavlenii banakhovykh algebr, abelevykh grupp i polugrupp v spektralnom analize lineinykh operatorov”, Sovrem. mat. Fundam. napravleniya, 9, 2004, 3–151 | MR | Zbl
[6] Baskakov A. G., Chernyshov K. I., “Spektralnyi analiz lineinykh otnoshenii i vyrozhdennye polugruppy operatorov”, Mat. sb., 193:11 (2002), 3–42 | MR | Zbl
[7] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR
[8] Bichegkuev M. S., “Ob oslablennoi zadache Koshi dlya lineinogo differentsialnogo vklyucheniya”, Mat. zametki, 79:4 (2006), 483–487 | MR | Zbl