The closure of the Hardy space in the Bloch norm
Algebra i analiz, Tome 22 (2010) no. 1, pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

A description of the closure in the Bloch norm of the Bloch functions that are in a Hardy space is given. The result uses the classical estimates for the Lusin area function.
Keywords: Bloch norm, bounded mean oscillation, Lusin area function.
@article{AA_2010_22_1_a2,
     author = {Nacho Monreal Gal\'an and Artur Nicolau},
     title = {The closure of the {Hardy} space in the {Bloch} norm},
     journal = {Algebra i analiz},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/}
}
TY  - JOUR
AU  - Nacho Monreal Galán
AU  - Artur Nicolau
TI  - The closure of the Hardy space in the Bloch norm
JO  - Algebra i analiz
PY  - 2010
SP  - 75
EP  - 81
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/
LA  - en
ID  - AA_2010_22_1_a2
ER  - 
%0 Journal Article
%A Nacho Monreal Galán
%A Artur Nicolau
%T The closure of the Hardy space in the Bloch norm
%J Algebra i analiz
%D 2010
%P 75-81
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/
%G en
%F AA_2010_22_1_a2
Nacho Monreal Galán; Artur Nicolau. The closure of the Hardy space in the Bloch norm. Algebra i analiz, Tome 22 (2010) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/

[1] Anderson J. M., Clunie J., Pommerenke Ch., “On Bloch functions and normal functions”, J. Reine Angew. Math., 270 (1974), 12–37 | MR | Zbl

[2] Axler S., Zhu K. H., “Boundary behavior of derivatives of analytic functions”, Michigan Math. J., 39:1 (1992), 129–143 | DOI | MR | Zbl

[3] Garnett J. B., Jones P. W., “The distance in BMO to $L^\infty$”, Ann. Math. (2), 108:2 (1978), 373–393 | DOI | MR | Zbl

[4] Garnett J. B., Bounded analytic functions, Grad. Texts in Math., 236, Springer, New York, 2007 | MR

[5] Ghatage P. G., Zheng D. C., “Analytic functions of bounded mean oscillation and the Bloch space”, Integral Equations Operator Theory, 17:4 (1993), 501–515 | DOI | MR | Zbl

[6] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl

[7] Marcinkiewicz J., Zygmund A., “A theorem of Lusin, I”, Duke Math. J., 4:3 (1938), 473–485 | DOI | MR | Zbl

[8] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR