Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2010_22_1_a2, author = {Nacho Monreal Gal\'an and Artur Nicolau}, title = {The closure of the {Hardy} space in the {Bloch} norm}, journal = {Algebra i analiz}, pages = {75--81}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/} }
Nacho Monreal Galán; Artur Nicolau. The closure of the Hardy space in the Bloch norm. Algebra i analiz, Tome 22 (2010) no. 1, pp. 75-81. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a2/
[1] Anderson J. M., Clunie J., Pommerenke Ch., “On Bloch functions and normal functions”, J. Reine Angew. Math., 270 (1974), 12–37 | MR | Zbl
[2] Axler S., Zhu K. H., “Boundary behavior of derivatives of analytic functions”, Michigan Math. J., 39:1 (1992), 129–143 | DOI | MR | Zbl
[3] Garnett J. B., Jones P. W., “The distance in BMO to $L^\infty$”, Ann. Math. (2), 108:2 (1978), 373–393 | DOI | MR | Zbl
[4] Garnett J. B., Bounded analytic functions, Grad. Texts in Math., 236, Springer, New York, 2007 | MR
[5] Ghatage P. G., Zheng D. C., “Analytic functions of bounded mean oscillation and the Bloch space”, Integral Equations Operator Theory, 17:4 (1993), 501–515 | DOI | MR | Zbl
[6] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426 | DOI | MR | Zbl
[7] Marcinkiewicz J., Zygmund A., “A theorem of Lusin, I”, Duke Math. J., 4:3 (1938), 473–485 | DOI | MR | Zbl
[8] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR