Conjugacy of real diffeomorphisms. A~survey
Algebra i analiz, Tome 22 (2010) no. 1, pp. 3-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a group $G$, the conjugacy problem in $G$ is the problem of giving an effective procedure for determining whether or not two given elements $f,g\in G$ are conjugate, i.e. whether there exists $h\in G$ with $fh=hg$. This paper is about the conjugacy problem in the group $\mathrm{Diffeo}(I)$ of all diffeomorphisms of an interval $I\subset\mathbb R$. There is much classical work on the subject, solving the conjugacy problem for special classes of maps. Unfortunately, it is also true that many results and arguments known to the experts are difficult to find in the literature, or simply absent. We try to repair these lacunae, by giving a systematic review, and we also include new results about the conjugacy classification in the general case.
Keywords: diffeomorphism group, conjugacy, real line, orientation.
@article{AA_2010_22_1_a0,
     author = {A. G. O'Farrell and M. Roginskaya},
     title = {Conjugacy of real diffeomorphisms. {A~survey}},
     journal = {Algebra i analiz},
     pages = {3--56},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2010_22_1_a0/}
}
TY  - JOUR
AU  - A. G. O'Farrell
AU  - M. Roginskaya
TI  - Conjugacy of real diffeomorphisms. A~survey
JO  - Algebra i analiz
PY  - 2010
SP  - 3
EP  - 56
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2010_22_1_a0/
LA  - en
ID  - AA_2010_22_1_a0
ER  - 
%0 Journal Article
%A A. G. O'Farrell
%A M. Roginskaya
%T Conjugacy of real diffeomorphisms. A~survey
%J Algebra i analiz
%D 2010
%P 3-56
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2010_22_1_a0/
%G en
%F AA_2010_22_1_a0
A. G. O'Farrell; M. Roginskaya. Conjugacy of real diffeomorphisms. A~survey. Algebra i analiz, Tome 22 (2010) no. 1, pp. 3-56. http://geodesic.mathdoc.fr/item/AA_2010_22_1_a0/

[1] Afraimovitch V., Liu W. S., Young T., “Conventional multipliers for homoclinic orbits”, Nonlinearity, 9 (1996), 115–136 | DOI | MR

[2] Ahern P., Rosay J.-P., “Entire functions, in the classification of differentiable germs tangent to the identity, in one or two variables”, Trans. Amer. Math. Soc., 347 (1995), 543–572 | DOI | MR | Zbl

[3] Belitskii G. R., “Gladkaya klassifikatsiya odnomernykh diffeomorfizmov s giperbolicheskimi nepodvizhnymi tochkami”, Sib. mat. zh., 27:6 (1986), 21–24 | MR

[4] Boyce W. E., DiPrima R. C., Elementary differential equations and boundary value problems, 2nd ed., Wiley, New York etc., 1969 | MR | Zbl

[5] Carleson L., Gamelin T. W., Complex dynamics, Springer-Verlag, New York, 1993 | MR | Zbl

[6] Lubin J., “Non-Archimedean dynamical systems”, Compositio Math., 94 (1994), 321–346 | MR | Zbl

[7] Calica A. B., “Reversible homeomorphisms of the real line”, Pacific J. Math., 39 (1971), 79–87 | MR | Zbl

[8] de Melo W., van Strien S., One-dimensional dynamics, Ergeb. Math. Grenzgeb. (3), 25, Springer, Berlin, 1993 | MR | Zbl

[9] Epstein D. B. A., “The simplicity of certain groups of homeomorphisms”, Compositio Math., 22 (1970), 165–173 | MR | Zbl

[10] Kopell N., “Commuting diffeomorphisms”, Global Analysis, Proc. Sympos. Pure Math., 14, Amer. Math. Soc., Providence, RI, 1970, 165–184 | MR

[11] Kasner E., “Conformal classification of analytic arcs or elements: Poincaré's local problem of conformal geometry”, Trans. Amer. Math. Soc., 16 (1915), 333–349 | DOI | MR | Zbl

[12] Katok A., Hasselblatt B., “Introduction to the modern theory of dynamical systems”, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[13] Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia Math. Appl., 32, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[14] Mather J., “Commutators of diffeomorphisms”, Comment. Math. Helv., 49 (1974), 512–528 | DOI | MR | Zbl

[15] Mather J., Commutators of $C^r$ diffeomorphisms of the real line, Unpublished preprint, privately communicated

[16] Mather J., “On Haefliger's classifying space, I”, Bull. Amer. Math. Soc., 77 (1971), 1111–1115 | DOI | MR | Zbl

[17] Mather J., “Integrability in codimension, 1”, Comment. Math. Helv., 48 (1973), 195–233 | DOI | MR | Zbl

[18] Mirkil H., “Differentiable functions, formal power series, and moments”, Proc. Amer. Math. Soc., 7 (1956), 650–652 | DOI | MR | Zbl

[19] Navas A., “Groupes résolubles de difféomorphismes de l'intervalle, du cercle et de la droite”, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13–50 | DOI | MR | Zbl

[20] Navas A., Grupos de difeomorfismos del circulo, Ensaios Mat., 13, Soc. Brazil. Mat., Rio de Janeiro, 2007 | MR | Zbl

[21] O'Farrell A. G., “Conjugacy, involutions, and revesibility for real homeomorphisms”, Irish Math. Soc. Bull., 54 (2004), 41–52 | MR

[22] O'Farrell A. G., “Composition of involutive power series, and reversible series”, Comput. Methods Funct. Theory, 8 (2008), 173–193 | MR

[23] O'Farrell A. G., Roginskaya M., “Reducing conjugacy in the full diffeomorphism group of $\mathbb R$ to conjugacy in the subgroup of orientation-preserving maps”, Zap. nauch. semin. POMI, 360, 2008, 231–237 ; J. Math. Sci., 158 (2009), 895–898 | DOI

[24] O'Farrell A. G., Short I., “Reversibility in the diffeomorphism group of the real line”, Publ. Math. (to appear)

[25] Robbin J. W., “Unfoldings of discrete dynamical systems”, Ergodic Theory Dynam. Systems, 4 (1984), 421–486 | DOI | MR | Zbl

[26] Rudin W., Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987 | MR | Zbl

[27] Sergeraert F., “Feuilletages et difféomorphismes infiniment tangents à l'identité”, Invent. Math., 39 (1977), 253–275 | DOI | MR | Zbl

[28] Sternberg S., “Local $C^n$ transformations of the real line”, Duke Math. J., 24 (1957), 97–102 | DOI | MR | Zbl

[29] Szekeres G., “Regular iteration of real and complex functions”, Acta Math., 100 (1958), 203–258 | DOI | MR | Zbl

[30] Takens F., “Normal forms for certain singularities of vectorfields”, Ann. Inst. Fourier (Grenoble), 23 (1973), 163–195 | MR | Zbl

[31] Voronin S. M., “Analiticheskaya klassifikatsiya rostkov konformnykh otobrazhenii $(\mathbb C,0)\to(\mathbb C,0)$ s tozhdestvennoi lineinoi chastyu”, Funkts. anal. i ego pril., 15:1 (1981), 1–17 | MR | Zbl

[32] Whitney H., “Differentiable functions defined in closed sets, I”, Trans. Amer. Math. Soc., 36 (1934), 369–387 | DOI | MR | Zbl

[33] Yoccoz J.-C., “Centralisateurs et conjugaison différentiable des difféomorphismes du cercle. Petits diviseurs en dimension, 1”, Astérisque, 231 (1995), 89–242 | MR

[34] Young T. R., “$C^k$ conjugacy of one-dimensional diffeomorphisms with periodic points”, Proc. Amer. Math. Soc., 125 (1997), 1987–1995 | DOI | MR | Zbl