The spectral localization property for diagonal operators and semigroups
Algebra i analiz, Tome 21 (2009) no. 6, pp. 202-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2009_21_6_a6,
     author = {N. K. Nikolski},
     title = {The spectral localization property for diagonal operators and semigroups},
     journal = {Algebra i analiz},
     pages = {202--226},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/}
}
TY  - JOUR
AU  - N. K. Nikolski
TI  - The spectral localization property for diagonal operators and semigroups
JO  - Algebra i analiz
PY  - 2009
SP  - 202
EP  - 226
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/
LA  - en
ID  - AA_2009_21_6_a6
ER  - 
%0 Journal Article
%A N. K. Nikolski
%T The spectral localization property for diagonal operators and semigroups
%J Algebra i analiz
%D 2009
%P 202-226
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/
%G en
%F AA_2009_21_6_a6
N. K. Nikolski. The spectral localization property for diagonal operators and semigroups. Algebra i analiz, Tome 21 (2009) no. 6, pp. 202-226. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/

[1] Duoandikoetxea J., Fourier analysis, Grad. Stud. in Math., 29, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[2] El-Falla O., Nikolskii N. K., Zarrabi M., “Otsenki rezolvent v algebrakh Bërlinga–Soboleva”, Algebra i analiz, 10:6 (1998), 1–92 | MR | Zbl

[3] Gamelin T., Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge–New York, 1978 | MR | Zbl

[4] Gorkin P., Mortini R., Nikolski N., “Norm controlled inversions and a corona theorem for $H^\infty$-quotient algebras”, J. Funct. Anal., 255 (2008), 854–876 | DOI | MR | Zbl

[5] Graham C. C., McGehee O. C., Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl

[6] Kahane J.-P., Salem R., Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., 1301, Hermann, Paris, 1963 | MR | Zbl

[7] Nikolski N., Operators, functions, and systems, Vol. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[8] Nikolski N., “In search of the invisible spectrum”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1925–1998 | MR | Zbl

[9] Nikolski N., “The problem of efficient inversions and Bezout equations”, Twentieth Century Harmonic Analysis – a Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 235–269 | MR | Zbl

[10] Treatise of the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin etc., 1986 | MR | MR

[11] Vasyunin V. I., Nikolskii N. K., Algebra sledov algebry $H^\infty$ s zadannoi kriticheskoi konstantoi. Prilozhenie k zadache Burgeina–Tsafriri, gotovitsya k pechati

[12] Rudin W., Fourier analysis on groups, Intersci. Tracts in Pure Appl. Math., 12, Intersci. Publ., New York–London, 1962 | MR | Zbl

[13] Singer I., Bases in Banach spaces, I, Grundlehren Math. Wiss., 154, Springer–Verlag, New York–Berlin, 1970 ; Bases in Banach spaces, II, Springer-Verlag, Berlin–New York, 1981 | MR | MR | Zbl

[14] Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[15] Torchinsky A., Real-variable methods in harmonic analysis, Pure Appl. Math., 123, Acad. Press, Inc., Orlando, FL, 1986 | MR | Zbl