Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_6_a6, author = {N. K. Nikolski}, title = {The spectral localization property for diagonal operators and semigroups}, journal = {Algebra i analiz}, pages = {202--226}, publisher = {mathdoc}, volume = {21}, number = {6}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/} }
N. K. Nikolski. The spectral localization property for diagonal operators and semigroups. Algebra i analiz, Tome 21 (2009) no. 6, pp. 202-226. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a6/
[1] Duoandikoetxea J., Fourier analysis, Grad. Stud. in Math., 29, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[2] El-Falla O., Nikolskii N. K., Zarrabi M., “Otsenki rezolvent v algebrakh Bërlinga–Soboleva”, Algebra i analiz, 10:6 (1998), 1–92 | MR | Zbl
[3] Gamelin T., Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge–New York, 1978 | MR | Zbl
[4] Gorkin P., Mortini R., Nikolski N., “Norm controlled inversions and a corona theorem for $H^\infty$-quotient algebras”, J. Funct. Anal., 255 (2008), 854–876 | DOI | MR | Zbl
[5] Graham C. C., McGehee O. C., Essays in commutative harmonic analysis, Grundlehren Math. Wiss., 238, Springer-Verlag, New York–Berlin, 1979 | MR | Zbl
[6] Kahane J.-P., Salem R., Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., 1301, Hermann, Paris, 1963 | MR | Zbl
[7] Nikolski N., Operators, functions, and systems, Vol. 1, Math. Surveys Monogr., 92, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[8] Nikolski N., “In search of the invisible spectrum”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1925–1998 | MR | Zbl
[9] Nikolski N., “The problem of efficient inversions and Bezout equations”, Twentieth Century Harmonic Analysis – a Celebration (Il Ciocco, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 235–269 | MR | Zbl
[10] Treatise of the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin etc., 1986 | MR | MR
[11] Vasyunin V. I., Nikolskii N. K., Algebra sledov algebry $H^\infty$ s zadannoi kriticheskoi konstantoi. Prilozhenie k zadache Burgeina–Tsafriri, gotovitsya k pechati
[12] Rudin W., Fourier analysis on groups, Intersci. Tracts in Pure Appl. Math., 12, Intersci. Publ., New York–London, 1962 | MR | Zbl
[13] Singer I., Bases in Banach spaces, I, Grundlehren Math. Wiss., 154, Springer–Verlag, New York–Berlin, 1970 ; Bases in Banach spaces, II, Springer-Verlag, Berlin–New York, 1981 | MR | MR | Zbl
[14] Stein E., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Monographs in Harmonic Analysis, III, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[15] Torchinsky A., Real-variable methods in harmonic analysis, Pure Appl. Math., 123, Acad. Press, Inc., Orlando, FL, 1986 | MR | Zbl