Blaschke products and nonideal ideals in higher order Lipschitz algebras
Algebra i analiz, Tome 21 (2009) no. 6, pp. 182-201.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate certain ideals (associated with Blaschke products) of the analytic Lipschitz algebra $A^\alpha$, with $\alpha>1$, that fail to be “ideal spaces”. The latter means that the ideals in question are not describable by any size condition on the function's modulus. In the case where $\alpha=n$ is an integer, we study this phenomenon for the algebra $H^\infty_n=\{f\colon f^{(n)}\in H^\infty\}$ rather than for its more manageable Zygmund-type version. This part is based on a new theorem concerning the canonical factorization in $H^\infty_n$.
Keywords: inner functions, Blaschke products, Lipschitz spaces, ideals.
@article{AA_2009_21_6_a5,
     author = {K. M. Dyakonov},
     title = {Blaschke products and nonideal ideals in higher order {Lipschitz} algebras},
     journal = {Algebra i analiz},
     pages = {182--201},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a5/}
}
TY  - JOUR
AU  - K. M. Dyakonov
TI  - Blaschke products and nonideal ideals in higher order Lipschitz algebras
JO  - Algebra i analiz
PY  - 2009
SP  - 182
EP  - 201
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_6_a5/
LA  - en
ID  - AA_2009_21_6_a5
ER  - 
%0 Journal Article
%A K. M. Dyakonov
%T Blaschke products and nonideal ideals in higher order Lipschitz algebras
%J Algebra i analiz
%D 2009
%P 182-201
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_6_a5/
%G en
%F AA_2009_21_6_a5
K. M. Dyakonov. Blaschke products and nonideal ideals in higher order Lipschitz algebras. Algebra i analiz, Tome 21 (2009) no. 6, pp. 182-201. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a5/

[1] Carleson L., “Sets of uniqueness for functions regular in the unit circle”, Acta Math., 87 (1952), 325–345 | DOI | MR | Zbl

[2] Dyakonov K. M., “Gladkie funktsii i koinvariantnye podprostranstva operatora sdviga”, Algebra i analiz, 4:5 (1992), 117–147 | MR | Zbl

[3] Dyakonov K. M., “Division and multiplication by inner functions and embedding theorems for star-invariant subspaces”, Amer. J. Math., 115 (1993), 881–902 | DOI | MR | Zbl

[4] Dyakonov K. M., “Multiplication by Blaschke products and stability of ideals in Lipschitz algebras”, Math. Scand., 73 (1993), 246–258 | MR | Zbl

[5] Dyakonov K. M., “Equivalent norms on Lipschitz-type spaces of holomorphic functions”, Acta Math., 178 (1997), 143–167 | DOI | MR | Zbl

[6] Dyakonov K. M., “Holomorphic functions and quasiconformal mappings with smooth moduli”, Adv. Math., 187 (2004), 146–172 | DOI | MR | Zbl

[7] Dyakonov K. M., “Self-improving behaviour of inner functions as multipliers”, J. Funct. Anal., 240 (2006), 429–444 | DOI | MR | Zbl

[8] Dynkin E. M., “Mnozhestva svobodnoi interpolyatsii dlya klassov Gëldera”, Mat. sb., 109(151):1 (1979), 107–128 | MR

[9] Dyn'kin E. M., “The pseudoanalytic extension”, J. Anal. Math., 60 (1993), 45–70 | MR

[10] Garnett J. B., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, Inc., New York–London, 1981 | MR | Zbl

[11] Khavin V. P., “O faktorizatsii analiticheskikh funktsii, gladkikh vplot do granitsy”, Zap. nauch. semin. LOMI, 22, 1971, 202–205 | Zbl

[12] Shirokov N. A., “Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary”, Complex Analysis and Spectral Theory (Leningrad, 1979–1980), Lecture Notes in Math., 864, Springer, Berlin–New York, 1981, 413–439 | MR

[13] Shirokov N. A., “Svobodnaya interpolyatsiya v prostranstvakh $C^A_{r,\omega}$”, Mat. sb., 117(159):3 (1982), 337–358 | MR | Zbl

[14] Shirokov N. A., Analytic functions smooth up to the boundary, Lecture Notes in Math., 1312, Springer-Verlag, Berlin, 1988 | MR | Zbl