Families of fractional Cauchy transforms in the ball
Algebra i analiz, Tome 21 (2009) no. 6, pp. 151-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B_n$ denote the unit ball in ${\mathbb{C}}^n$, $n\ge 1$. Given $\alpha>0$, let ${\mathcal K}_\alpha(n)$ denote the class of functions defined for $z\in B_n$ by integrating the kernel $(1-\langle z,\zeta\rangle)^{-\alpha}$ against a complex-valued Borel measure on the sphere $\{\zeta\in{\mathbb{C}}^n:|\zeta|=1\}$. The families ${\mathcal K}_\alpha(1)$ of fractional Cauchy transforms have been investigated intensively by several authors. In the paper, various properties of $\mathcal K_\alpha(n)$, $n\ge 2$, are studied. In particular, relations between ${\mathcal K}_\alpha(n)$ and other spaces of holomorphic functions in the ball are obtained. Also, pointwise multipliers for the spaces ${\mathcal K}_\alpha (n)$ are investigated.
@article{AA_2009_21_6_a4,
     author = {E. S. Dubtsov},
     title = {Families of fractional {Cauchy} transforms in the ball},
     journal = {Algebra i analiz},
     pages = {151--181},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a4/}
}
TY  - JOUR
AU  - E. S. Dubtsov
TI  - Families of fractional Cauchy transforms in the ball
JO  - Algebra i analiz
PY  - 2009
SP  - 151
EP  - 181
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_6_a4/
LA  - ru
ID  - AA_2009_21_6_a4
ER  - 
%0 Journal Article
%A E. S. Dubtsov
%T Families of fractional Cauchy transforms in the ball
%J Algebra i analiz
%D 2009
%P 151-181
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_6_a4/
%G ru
%F AA_2009_21_6_a4
E. S. Dubtsov. Families of fractional Cauchy transforms in the ball. Algebra i analiz, Tome 21 (2009) no. 6, pp. 151-181. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a4/

[1] Ahern P., Cohn W., “Exceptional sets for Hardy–Sobolev functions, $p>1$”, Indiana Univ. Math. J., 38:2 (1989), 417–453 | DOI | MR | Zbl

[2] Ahern P., Schneider R., “A smoothing property of the Henkin and Szegő projections”, Duke Math. J., 47:1 (1980), 135–143 | DOI | MR | Zbl

[3] Aleksandrov A. B., “Teoriya funktsii v share”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 8, VINITI, M., 1985, 115–190 | MR | Zbl

[4] Beatrous F., Burbea J., Holomorphic Sobolev spaces on the ball, Diss. Math. (Rozprawy Mat.), 276, 1989, 60 pp. | MR | Zbl

[5] Beatrous F., Burbea J., “On multipliers for Hardy–Sobolev spaces”, Proc. Amer. Math. Soc., 136:6 (2008), 2125–2133 | DOI | MR | Zbl

[6] Bergh J., Löfström J., Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin, 1976 | MR | Zbl

[7] Brickman L., Hallenbeck D. J., Macgregor T. H., Wilken D. R., “Convex hulls and extreme points of families of starlike and convex mappings”, Trans. Amer. Math. Soc., 185 (1973), 413–428 | DOI | MR

[8] Cascante C., Ortega J. M., “Tangential-exceptional sets for Hardy–Sobolev spaces”, Illinois J. Math., 39:1 (1995), 68–85 | MR | Zbl

[9] Cima J. A., Matheson A. L., Ross W. T., The Cauchy transform, Math. Surveys Monogr., 125, Amer. Math. Soc., Providence, RI, 2006 | MR | Zbl

[10] Hallenbeck D. J., “Tangential limits of Cauchy–Stieltjes transforms”, Complex Variables Theory Appl., 33:1–4 (1997), 129–136 | MR | Zbl

[11] Hallenbeck D. J., MacGregor T. H., “Growth and zero sets of analytic families of Cauchy–Stieltjes integrals”, J. Anal. Math., 61 (1993), 231–259 | DOI | MR | Zbl

[12] Hallenbeck D. J., MacGregor T. H., “Radial limits and radial growth of Cauchy–Stieltjes transforms”, Complex Variables Theory Appl., 21:3–4 (1993), 219–229 | MR | Zbl

[13] Hallenbeck D. J., MacGregor T. H., Samotij K., “Fractional Cauchy transforms, inner functions and multipliers”, Proc. London Math. Soc. (3), 72:1 (1996), 157–187 | DOI | MR | Zbl

[14] Khavin V. P., “Ob analiticheskikh funktsiyakh, predstavimykh integralom tipa Koshi–Stiltesa”, Vestn. Leningr. un-ta. Ser. Mat., mekh., astronom., 1958, no. 13, 66–79 | Zbl

[15] Khavin V. P., “O sootnosheniyakh mezhdu nekotorymi klassami funktsii, regulyarnykh v edinichnom kruge”, Vestn. Leningr. un-ta. Ser. Mat., mekh., astronom., 1962, no. 17, 102–110 | Zbl

[16] Hibschweiler R. A., MacGregor T. H., “Multipliers of families of Cauchy–Stieltjes transforms”, Trans. Amer. Math. Soc., 331:1 (1992), 377–394 | DOI | MR | Zbl

[17] Hibschweiler R. A., MacGregor T. H., Fractional Cauchy transforms, Chapman Hall/CRC Monogr. Surveys in Pure Appl. Math., 136, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[18] Hruščev S. V., Vinogradov S. A., “Inner functions and multipliers of Cauchy type integrals”, Ark. Mat., 19:1 (1981), 23–42 | DOI | MR

[19] Krotov V. G., “Otsenki dlya maksimalnykh operatorov, svyazannykh s granichnym povedeniem, i ikh prilozheniya”, Tr. Mat. in-ta AN SSSR, 190, 1989, 117–138 | MR | Zbl

[20] MacGregor T. H., “Analytic and univalent functions with integral representations involving complex measures”, Indiana Univ. Math. J., 36:1 (1987), 109–130 | DOI | MR | Zbl

[21] Nagel A., Rudin W., Shapiro J. H., “Tangential boundary behavior of functions in Dirichlet-type spaces”, Ann. of Math. (2), 116:2 (1982), 331–360 | DOI | MR | Zbl

[22] Ortega J. M., Fàbrega J., “Multipliers in Hardy–Sobolev spaces”, Integral Equations Operator Theory, 55:4 (2006), 535–560 | DOI | MR | Zbl

[23] Rudin W., Function theory in the unit ball of $\mathbf C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980 | MR | Zbl

[24] Rudin W., New constructions of functions holomorphic in the unit ball of $\mathbf C^n$, Published for the Conference Board of the Mathematical Sciences (Washington, DC), CBMS Regional Conf. Ser. in Math., 63, Amer. Math. Soc., Providence, RI, 1986 | MR | Zbl

[25] Ryan P., Stoll M., “Hardy–Sobolev spaces and algebras of holomorphic functions on the unit ball in $\mathbb C^n$”, Complex Var. Elliptic Equ., 53:6 (2008), 565–584 | DOI | MR | Zbl

[26] Sueiro J., “Tangential boundary limits and exceptional sets for holomorphic functions in Dirichlet-type spaces”, Math. Ann., 286:4 (1990), 661–678 | DOI | MR | Zbl

[27] Tamm M., “Sur l'image par une fonction holomorphe bornée du bord d'un domaine pseudoconvexe”, C. R. Acad. Sci. Paris Sér. I Math., 294:16 (1982), 537–540 | MR | Zbl

[28] Ullrich D. C., “A Bloch function in the ball with no radial limits”, Bull. London Math. Soc., 20:4 (1988), 337–341 | DOI | MR | Zbl

[29] Vinogradov S. A., Goluzina M. G., Khavin V. P., “Multiplikatory i deliteli integralov tipa Koshi–Stiltesa”, Zap. nauch. semin. LOMI, 19, 1970, 55–78 | MR | Zbl

[30] Zhu K., Spaces of holomorphic functions in the unit ball, Grad. Texts in Math., 226, Springer-Verlag, New York, 2005 | MR | Zbl