@article{AA_2009_21_6_a1,
author = {A. Borichev and Yu. Lyubarskiǐ and E. Malinnikova and P. Thomas},
title = {Radial growth of functions in the {Korenblum} space},
journal = {Algebra i analiz},
pages = {47--65},
year = {2009},
volume = {21},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a1/}
}
A. Borichev; Yu. Lyubarskiǐ; E. Malinnikova; P. Thomas. Radial growth of functions in the Korenblum space. Algebra i analiz, Tome 21 (2009) no. 6, pp. 47-65. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a1/
[1] Bagemihl F., Seidel W., “Some boundary properties of analytic functions”, Math. Z., 61 (1954), 186–199 | DOI | MR | Zbl
[2] Borichev A., “On the minimum of harmonic functions”, J. Anal. Math., 89 (2003), 199–212 | DOI | MR | Zbl
[3] Borichev A., Lyubarskii Yu., “Uniqueness theorems for Korenblum type spaces”, J. Anal. Math., 103 (2007), 307–329 | DOI | MR | Zbl
[4] Cabrelli C., Mendivil F., Molter U., Shonkwiler R., “On the Hausdorff $h$-measure of Cantor sets”, Pacific J. Math., 217:1 (2004), 45–59 | DOI | MR | Zbl
[5] Eiderman V. Ya., “O sravnenii mery Khausdorfa i emkosti”, Algebra i analiz, 3:6 (1991), 173–188 | MR | Zbl
[6] Garnett J., Marshall D., Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005, 571 pp. | MR | Zbl
[7] Heinonen J., Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | MR
[8] Horowitz C., “Zeros of functions in the Bergman spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl
[9] Kahane J.-P., Katznelson Y., “Sur le comportement radial des fonctions analytiques”, C. R. Acad. Sci. Paris Sér. A–B, 272 (1971), A718–A719 | MR
[10] Korenblum B., “An extension of the Nevanlinna theory”, Acta Math., 135:3–4 (1975), 187–219 | DOI | MR | Zbl
[11] Nikolskii N. K., Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza, Tr. Mat. in-ta AN SSSR, 120, 1974, 272 pp. | MR
[12] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950
[13] Seip K., “On Korenblum's density condition for the zero sequences of $A^{-\infty}$”, J. Anal. Math., 67 (1995), 307–322 | DOI | MR | Zbl