Majorization in de~Branges spaces.~III. Division by Blaschke products
Algebra i analiz, Tome 21 (2009) no. 6, pp. 3-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a part of a series dealing with subspaces of de Branges spaces of entire functions generated by majorization on subsets of the closed upper half-plane. In the present, third, part the study of a certain Banach space generated by an admissible majorant is continued. The main theme is “invariance of the unit ball with respect to division by Blaschke products”. In connection with this topic, representability via special types of majorants plays an important role. Some (positive and negative) results on invariance under division by Blaschke factors are obtained, and the unit balls representable by $\log$-superharmonic majorants are characterized.
Keywords: de Branges subspace, majorant, subharmonic function, Blaschke product.
@article{AA_2009_21_6_a0,
     author = {A. Baranov and H. Woracek},
     title = {Majorization in {de~Branges} {spaces.~III.} {Division} by {Blaschke} products},
     journal = {Algebra i analiz},
     pages = {3--46},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_6_a0/}
}
TY  - JOUR
AU  - A. Baranov
AU  - H. Woracek
TI  - Majorization in de~Branges spaces.~III. Division by Blaschke products
JO  - Algebra i analiz
PY  - 2009
SP  - 3
EP  - 46
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_6_a0/
LA  - en
ID  - AA_2009_21_6_a0
ER  - 
%0 Journal Article
%A A. Baranov
%A H. Woracek
%T Majorization in de~Branges spaces.~III. Division by Blaschke products
%J Algebra i analiz
%D 2009
%P 3-46
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_6_a0/
%G en
%F AA_2009_21_6_a0
A. Baranov; H. Woracek. Majorization in de~Branges spaces.~III. Division by Blaschke products. Algebra i analiz, Tome 21 (2009) no. 6, pp. 3-46. http://geodesic.mathdoc.fr/item/AA_2009_21_6_a0/

[1] Baranov A. D., “Polynomials in the de Branges spaces of entire functions”, Ark. Mat., 44 (2006), 16–38 | DOI | MR | Zbl

[2] Baranov A., Woracek H., “Subspaces of de Branges spaces generated by majorants”, Canad. J. Math., 61:3 (2009), 503–517 | DOI | MR | Zbl

[3] Baranov A., Woracek H., “Finite-dimensional de Branges subspaces generated by majorants”, Operator Theory Adv. Appl., 188 (2009), 37–48 | Zbl

[4] Baranov A., Woracek H., Majorization in de Branges spaces. I. Representability of subspaces, arXiv:0906.2939v1[math.CV]

[5] Baranov A., Woracek H., Majorization in de Branges spaces. II. Banach spaces generated by majorants, arXiv:0906.2943v1[math.CV]

[6] Beurling A., Malliavin P., “On Fourier transforms of measures with compact support”, Acta Math., 107 (1962), 291–309 | DOI | MR | Zbl

[7] Boas R., Entire functions, Acad. Press, New York, 1954 | MR | Zbl

[8] De Branges L., “Some Hilbert spaces of entire functions”, Proc. Amer. Math. Soc., 10 (1959), 840–846 | DOI | MR | Zbl

[9] De Branges L., “Some Hilbert spaces of entire functions”, Trans. Amer. Math. Soc., 96 (1960), 259–295 | DOI | MR | Zbl

[10] De Branges L., “Some Hilbert spaces of entire functions, II”, Trans. Amer. Math. Soc., 99 (1961), 118–152 | DOI | MR | Zbl

[11] De Branges L., “Some Hilbert spaces of entire functions, III”, Trans. Amer. Math. Soc., 100 (1961), 73–115 | DOI | MR | Zbl

[12] De Branges L., “Some Hilbert spaces of entire functions, IV”, Trans. Amer. Math. Soc., 105 (1962), 43–83 | DOI | MR | Zbl

[13] De Branges L., Hilbert spaces of entire functions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1968 | MR | Zbl

[14] Havin V. P., Mashreghi J., “Admissible majorants for model subspaces of $H^2$. I. Slow winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1231–1263 | MR | Zbl

[15] Havin V. P., Mashreghi J., “Admissible majorants for model subspaces of $H^2$. II. Fast winding of the generating inner function”, Canad. J. Math., 55:6 (2003), 1264–1301 | MR | Zbl

[16] Hoffmann-Jørgensen J., Stochastic processes on Polish spaces, Various Publ. Ser. (Aarhus), 39, Aarhus Univ., Mat. Inst., Aarhus, 1991 | MR | Zbl

[17] Kaltenbäck M., Woracek H., “De Branges spaces of exponential type: general theory of growth”, Acta Sci. Math. (Szeged), 71:1–2 (2005), 231–284 | MR | Zbl

[18] Rosenblum M., Rovnyak J., Topics in Hardy classes and univalent functions, Birkhäuser Verlag, Basel, 1994 | MR | Zbl

[19] Rudin W., Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl