The identity with constants in a~Chevalley group of type~$\mathrm F_4$
Algebra i analiz, Tome 21 (2009) no. 5, pp. 196-202.

Voir la notice de l'article provenant de la source Math-Net.Ru

N. L. Gordeev proved that a generalized group identity holds in Chevalley groups with multiply laced root systems. It was also shown that a stronger identity is valid for the Chevalley groups of types $\mathrm{B}_l$ and $\mathrm{C}_l$. In the present paper, it is proved that this strong identity is fulfilled in Chevalley groups of type $\mathrm{F}_4$ and fails to be true in Chevalley groups of type $\mathrm{G}_2$. The main result of the paper is the last ingredient in the proof of the claim that the lattice of intermediate subgroups between $G(\mathrm{F}_4,R)$ and $G(\mathrm{F}_4,A)$ is standard for an arbitrary pair of rings $R\subseteq A$ with $2$ invertible.
@article{AA_2009_21_5_a8,
     author = {V. V. Nesterov and A. V. Stepanov},
     title = {The identity with constants in {a~Chevalley} group of type~$\mathrm F_4$},
     journal = {Algebra i analiz},
     pages = {196--202},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a8/}
}
TY  - JOUR
AU  - V. V. Nesterov
AU  - A. V. Stepanov
TI  - The identity with constants in a~Chevalley group of type~$\mathrm F_4$
JO  - Algebra i analiz
PY  - 2009
SP  - 196
EP  - 202
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_5_a8/
LA  - ru
ID  - AA_2009_21_5_a8
ER  - 
%0 Journal Article
%A V. V. Nesterov
%A A. V. Stepanov
%T The identity with constants in a~Chevalley group of type~$\mathrm F_4$
%J Algebra i analiz
%D 2009
%P 196-202
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_5_a8/
%G ru
%F AA_2009_21_5_a8
V. V. Nesterov; A. V. Stepanov. The identity with constants in a~Chevalley group of type~$\mathrm F_4$. Algebra i analiz, Tome 21 (2009) no. 5, pp. 196-202. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a8/

[1] Golubchik I. Z., Mikhalëv A. V.,, “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. semin. LOMI, 114, 1982, 96–119 | MR | Zbl

[2] Vavilov N. A., Stepanov A. V., “Nadgruppy poluprostykh grupp”, Vestn. Samar. gos. un-ta. Estestv.-nauch. seriya, 2008, no. 3, 51–95 | MR

[3] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl

[4] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[5] Tomanov G. M., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Mat. sb., 123(165):1 (1984), 35–49 | MR | Zbl

[6] Vavilov N. A., “O geometrii dlinnykh kornevykh podgrupp v gruppakh Shevalle”, Vestn. Leningr. un-ta. Mat., mekh., astronom., 1988, no. 1, 8–11 | MR | Zbl

[7] Gordeev N. L., “Freedom in conjugacy classes of simple algebraic groups and identities with constants”, Algebra i analiz, 9:4 (1997), 63–78 | MR | Zbl

[8] Stepanov A., Free product subgroups between Chevalley groups $\mathrm G(\Phi,F)$ and $\mathrm G(\Phi,F[t])$, Eprint , 2007 http://alexei.stepanov.spb.ru/papers/FreeProd.pdf

[9] Stepanov A., Subring subgroups in Chevalley groups with doubly laced root systems, Eprint , 2009 http://alexei.stepanov.spb.ru/papers/positive.pdf