The inverse Sturm--Liouville problem with mixed boundary conditions
Algebra i analiz, Tome 21 (2009) no. 5, pp. 114-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H\psi=-\psi''+q\psi$, $\psi(0)=0$, $\psi'(1)+b\psi(1)=0$ be a selfadjoint Sturm-Liouville operator acting in $L^2(0,1)$. Let $\lambda_n(q,b)$ and $\nu_n(q,b)$ denote its eigenvalues and the so-called norming constants, respectively. A complete characterization of all spectral data $(\{\lambda_n\}_{n=0}^{+\infty};\{\nu_n\}_{n=0}^{+\infty})$ corresponding to $(q;b)\in L^2(0,1)\times\mathbb{R}$ is given, together with a similar characterization for fixed $b$ and a parametrization of isospectral manifolds.
@article{AA_2009_21_5_a5,
     author = {E. L. Korotyaev and D. S. Chelkak},
     title = {The inverse {Sturm--Liouville} problem with mixed boundary conditions},
     journal = {Algebra i analiz},
     pages = {114--137},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/}
}
TY  - JOUR
AU  - E. L. Korotyaev
AU  - D. S. Chelkak
TI  - The inverse Sturm--Liouville problem with mixed boundary conditions
JO  - Algebra i analiz
PY  - 2009
SP  - 114
EP  - 137
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/
LA  - ru
ID  - AA_2009_21_5_a5
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%A D. S. Chelkak
%T The inverse Sturm--Liouville problem with mixed boundary conditions
%J Algebra i analiz
%D 2009
%P 114-137
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/
%G ru
%F AA_2009_21_5_a5
E. L. Korotyaev; D. S. Chelkak. The inverse Sturm--Liouville problem with mixed boundary conditions. Algebra i analiz, Tome 21 (2009) no. 5, pp. 114-137. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/

[1] Ambarzumyan V. A., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53 (1929), 690–695 | DOI

[2] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl

[3] Chelkak D., Korotyaev E., “The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition”, Ann. Henri Poincaré, 8 (2007), 1115–1150 | DOI | MR | Zbl

[4] Chelkak D., Kargaev P., Korotyaev E., “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Comm. Math. Phys., 249 (2004), 133–196 | DOI | MR | Zbl

[5] Dahlberg B., Trubowitz E., “The inverse Sturm–Liouville problem. III”, Comm. Pure Appl. Math., 37 (1984), 255–267 | DOI | MR | Zbl

[6] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl

[7] Isaacson E., Trubowitz E., “The inverse Sturm–Liouville problem. I”, Comm. Pure Appl. Math., 36 (1983), 767–783 | DOI | MR | Zbl

[8] Isaacson E., McKean H. P., Trubowitz E., “The inverse Sturm–Liouville problem. II”, Comm. Pure Appl. Math., 37 (1984), 1–11 | DOI | MR | Zbl

[9] Jodeit M., Levitan B. M., “The isospectrality problem for the classical Sturm–Liouville equation”, Adv. Differential Equations, 2 (1997), 297–318 | MR | Zbl

[10] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[11] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[12] Pöschel J., Trubowitz E., Inverse spectral theory, Pure Appl. Math., 130, Acad. Press, Inc., Boston, MA, 1987 | MR | Zbl

[13] Chelkak D., Korotyaev E., “Weyl–Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. Funct. Anal., 257 (2009), 1546–1588 | DOI | MR | Zbl