Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2009_21_5_a5, author = {E. L. Korotyaev and D. S. Chelkak}, title = {The inverse {Sturm--Liouville} problem with mixed boundary conditions}, journal = {Algebra i analiz}, pages = {114--137}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/} }
E. L. Korotyaev; D. S. Chelkak. The inverse Sturm--Liouville problem with mixed boundary conditions. Algebra i analiz, Tome 21 (2009) no. 5, pp. 114-137. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a5/
[1] Ambarzumyan V. A., “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53 (1929), 690–695 | DOI
[2] Borg G., “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl
[3] Chelkak D., Korotyaev E., “The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition”, Ann. Henri Poincaré, 8 (2007), 1115–1150 | DOI | MR | Zbl
[4] Chelkak D., Kargaev P., Korotyaev E., “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Comm. Math. Phys., 249 (2004), 133–196 | DOI | MR | Zbl
[5] Dahlberg B., Trubowitz E., “The inverse Sturm–Liouville problem. III”, Comm. Pure Appl. Math., 37 (1984), 255–267 | DOI | MR | Zbl
[6] Gelfand I. M., Levitan B. M., “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. mat., 15:4 (1951), 309–360 | MR | Zbl
[7] Isaacson E., Trubowitz E., “The inverse Sturm–Liouville problem. I”, Comm. Pure Appl. Math., 36 (1983), 767–783 | DOI | MR | Zbl
[8] Isaacson E., McKean H. P., Trubowitz E., “The inverse Sturm–Liouville problem. II”, Comm. Pure Appl. Math., 37 (1984), 1–11 | DOI | MR | Zbl
[9] Jodeit M., Levitan B. M., “The isospectrality problem for the classical Sturm–Liouville equation”, Adv. Differential Equations, 2 (1997), 297–318 | MR | Zbl
[10] Levitan B. M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl
[11] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[12] Pöschel J., Trubowitz E., Inverse spectral theory, Pure Appl. Math., 130, Acad. Press, Inc., Boston, MA, 1987 | MR | Zbl
[13] Chelkak D., Korotyaev E., “Weyl–Titchmarsh functions of vector-valued Sturm–Liouville operators on the unit interval”, J. Funct. Anal., 257 (2009), 1546–1588 | DOI | MR | Zbl