Dispersive estimates for discrete Schr\"odinger and Klein--Gordon equations
Algebra i analiz, Tome 21 (2009) no. 5, pp. 87-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The long-time asymptotics is derived for solutions of the discrete 3-dimensional Schrödinger and Klein–Gordon equations.
@article{AA_2009_21_5_a4,
     author = {E. A. Kopylova},
     title = {Dispersive estimates for discrete {Schr\"odinger} and {Klein--Gordon} equations},
     journal = {Algebra i analiz},
     pages = {87--113},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a4/}
}
TY  - JOUR
AU  - E. A. Kopylova
TI  - Dispersive estimates for discrete Schr\"odinger and Klein--Gordon equations
JO  - Algebra i analiz
PY  - 2009
SP  - 87
EP  - 113
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_5_a4/
LA  - ru
ID  - AA_2009_21_5_a4
ER  - 
%0 Journal Article
%A E. A. Kopylova
%T Dispersive estimates for discrete Schr\"odinger and Klein--Gordon equations
%J Algebra i analiz
%D 2009
%P 87-113
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_5_a4/
%G ru
%F AA_2009_21_5_a4
E. A. Kopylova. Dispersive estimates for discrete Schr\"odinger and Klein--Gordon equations. Algebra i analiz, Tome 21 (2009) no. 5, pp. 87-113. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a4/

[1] Blekher P. M., “Ob operatorakh, zavisyaschikh meromorfno ot parametra”, Vestn. MGU. Ser. 1, 1969, no. 5, 30–36

[2] Vainberg B. R., “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ reshenii nestatsionarnykh zadach”, Uspekhi mat. nauk, 30:2 (1975), 3–55 | MR | Zbl

[3] Vainberg B. R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, MGU, M., 1982 | MR

[4] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, Fizmatgiz, M., 1963 ; Direct methods of qualitative spectral analysis of singular differential operators, Jerusalem, 1965 ; Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey and Co., Inc., New York, 1966 | MR | Zbl | MR

[5] Islami H., Vainberg B., “Large time behavior of solutions to difference wave operators”, Comm. Partial Differential Equations, 31:1–3 (2006), 397–416 | DOI | MR | Zbl

[6] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl

[7] Jensen A., Nenciu G., “A unified approach to resolvent expansions at thresholds”, Rev. Math. Phys., 13:6 (2001), 717–754 | DOI | MR | Zbl

[8] Komech A., Kopylova E., Kunze M., “Dispersive estimates for $1D$ discrete Schrödinger and Klein–Gordon equations”, J. Appl. Anal., 85:12 (2006), 1487–1508 | DOI | MR | Zbl

[9] Komech A., Kopylova E., Vainberg B., “On dispersive properties of discrete $2D$ Schrödinger and Klein–Gordon equations”, J. Funct. Anal., 254 (2008), 2227–2254 | DOI | MR | Zbl

[10] Laks P., Fillips R., Teoriya rasseyaniya, Mir, M., 1971 | MR

[11] Murata M., “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49 (1982), 10–56 | DOI | MR | Zbl

[12] Schlag W., “Dispersive estimates for Schrödinger operators: a survey”, Mathematical Aspects of Nonlinear Dispersive Equations, Ann. of Math. Stud., 163, Princeton Univ. Press, Princeton, NJ, 2007, 255–285 ; Eprint arxiv: math.AP/0501037 | MR | Zbl

[13] Shaban W., Vainberg B., “Radiation conditions for the difference Schrödinger operators”, J. Appl. Anal., 80:3–4 (2001), 525–556 | DOI | MR | Zbl

[14] Eskina M. S., “Zadacha rasseyaniya dlya chastno-raznostnykh uravnenii”, Matematicheskaya fizika, Vyp. 3, Naukova dumka, Kiev, 1967, 248–273 | MR