Boundary at infinity of hyperbolic rank one spaces
Algebra i analiz, Tome 21 (2009) no. 5, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the canonical Carnot-Carathéodory spherical and horospherical metrics, which are defined on the boundary at infinity of every rank one symmetric space of noncompact type, are visual; i.e., they are bi-Lipschitz equivalent with universal bi-Lipschitz constants to the inverse exponent of Gromov products based in the space and on the boundary at infinity respectively.
@article{AA_2009_21_5_a0,
     author = {S. V. Buyalo and A. M. Kuznetsov},
     title = {Boundary at infinity of hyperbolic rank one spaces},
     journal = {Algebra i analiz},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_5_a0/}
}
TY  - JOUR
AU  - S. V. Buyalo
AU  - A. M. Kuznetsov
TI  - Boundary at infinity of hyperbolic rank one spaces
JO  - Algebra i analiz
PY  - 2009
SP  - 3
EP  - 18
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_5_a0/
LA  - ru
ID  - AA_2009_21_5_a0
ER  - 
%0 Journal Article
%A S. V. Buyalo
%A A. M. Kuznetsov
%T Boundary at infinity of hyperbolic rank one spaces
%J Algebra i analiz
%D 2009
%P 3-18
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_5_a0/
%G ru
%F AA_2009_21_5_a0
S. V. Buyalo; A. M. Kuznetsov. Boundary at infinity of hyperbolic rank one spaces. Algebra i analiz, Tome 21 (2009) no. 5, pp. 3-18. http://geodesic.mathdoc.fr/item/AA_2009_21_5_a0/

[1] Bourdon M., “Structure conforme au bord et flot géodésique d'un CAT(-1)-espace”, Enseign. Math. (2), 41 (1995), 63–102 | MR | Zbl

[2] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. in Math., European Math. Soc. (EMS), Zürich, 2007 | MR | Zbl

[3] Foertsch T., Schroeder V., Hyperbolicity, CAT(-1)-spaces and the Ptolomy inequality, arxiv: math/0605418v2

[4] Heintze E., Im Hof H.-C., “Geometry of horospheres”, J. Differential Geom., 12 (1977), 481–491 | MR | Zbl

[5] Kuznetsov A., “Metriki vidimosti na granitse na beskonechnosti kompleksnoi giperbolicheskoi ploskosti”, Zap. nauch. semin. POMI, 353, 2008, 70–92

[6] Mostow G. D., Strong rigidity of locally symmetric spaces, Ann. of Math. Stud., 78, Princeton Univ. Press, Princeton, NJ, 1973 | MR | Zbl

[7] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. of Math. (2), 129 (1989), 1–60 | DOI | MR | Zbl

[8] Wolf J., Spaces of constant curvature, Univ. California, Berkeley, CA, 1972 | MR