Junction of noncomposite polygons
Algebra i analiz, Tome 21 (2009) no. 3, pp. 165-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

All 3-dimensional convex regular-hedra are found, i.e., the convex polyhedra having positive curvature of each vertex and such that every face is either a regular polygon or is composed of two regular polygons. The algorithm for constructing such solids is based on calculation of the corresponding symmetry groups and gives a listing of all possible adjoins along entire faces of convex regular-hedra that cannot be cut by any plane into smaller regular-hedra.
@article{AA_2009_21_3_a6,
     author = {A. V. Timofeenko},
     title = {Junction of noncomposite polygons},
     journal = {Algebra i analiz},
     pages = {165--209},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_3_a6/}
}
TY  - JOUR
AU  - A. V. Timofeenko
TI  - Junction of noncomposite polygons
JO  - Algebra i analiz
PY  - 2009
SP  - 165
EP  - 209
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_3_a6/
LA  - ru
ID  - AA_2009_21_3_a6
ER  - 
%0 Journal Article
%A A. V. Timofeenko
%T Junction of noncomposite polygons
%J Algebra i analiz
%D 2009
%P 165-209
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_3_a6/
%G ru
%F AA_2009_21_3_a6
A. V. Timofeenko. Junction of noncomposite polygons. Algebra i analiz, Tome 21 (2009) no. 3, pp. 165-209. http://geodesic.mathdoc.fr/item/AA_2009_21_3_a6/

[1] Gurin A. M., Zalgaller V. A., “K istorii izucheniya vypuklykh mnogogrannikov s pravilnymi granyami i granyami, sostavlennymi iz pravilnykh”, Tr. S.-Peterburg. mat. o-va, 14, 2008, 215–294

[2] Zalgaller V. A., Vypuklye mnogogranniki s pravilnymi granyami, Zap. nauch. semin. LOMI, 2, 1967, 220 pp. | MR | Zbl

[3] Ivanov B. A., “Mnogogranniki s granyami, slozhennymi iz pravilnykh mnogougolnikov”, Ukr. geom. sb., 10, 1971, 20–34 | MR | Zbl

[4] Pryakhin Yu. A., “O vypuklykh mnogogrannikakh s pravilnymi granyami”, Ukr. geom. sb., 14, 1973, 83–88

[5] Timofeenko A. V., “O klassifikatsii vypuklykh pravilnogrannikov”, Algebra i logika, Materialy Mezhdunar. rossiisko-kitaiskogo seminara, Irkut. gos. ped. un-t, Irkutsk, 2007, 103–108

[6] Timofeenko A. V., “Nesostavnye mnogogranniki, otlichnye ot tel Platona i Arkhimeda”, Fundam. i prikl. mat., 14:2 (2008), 179–205 | MR

[7] Timofeenko A. V., “Vypuklye pravilnogranniki, ne rassekaemye nikakoi ploskostyu na pravilnogrannye chasti”, Matematicheskie trudy, 11:1 (2008), 132–152 | MR

[8] Timofeenko A. V., “O soedinenii nesostavnykh mnogogrannikov”, Trudy uchastnikov Mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, TsVVR, Rostov-na-Donu, 2008, 70–72

[9] Timofeenko A. V., Gurin A. M., “K teorii vypuklykh pravilnogrannykh tel”, Dokl. RAN, 419:3 (2008), 320–323 | MR | Zbl

[10] Timofeenko A. V., Gurin A. M., “Algebraicheskie i kompyuternye modeli vypuklykh mnogogrannikov s pravilnymi granyami i granyami, slozhennymi iz pravilnykh mnogougolnikov”, Geometriya v Odesse – 2008, Mezhdunar. konf., tezisy, eds. V. V. Goldberg, V. M. Kuzakon, A. G. Kushner, V. V. Lychagin, Odessa, 2008, 131–132

[11] Johnson N. W., “Convex polyhedra with regular faces”, Canad. J. Math., 18 (1966), 169–200 | MR | Zbl

[12] Zalgaller V. A., Convex polyhedra with regular faces, Sem. in Math. Steklov Math. Inst. Leningrad, 2, Consultants Bureau, New York, 1969 | MR