Solvability of the algebra of pseudodifferential operators with piecewise smooth coefficients on a~smooth manifold
Algebra i analiz, Tome 21 (2009) no. 2, pp. 214-263.

Voir la notice de l'article provenant de la source Math-Net.Ru

On a smooth compact manifold $\mathcal M$ without boundary, the $C^*$-algebra $\mathcal A$ generated on $L_2(\mathcal M)$ by the operators of two classes is considered. One class consists of zero order pseudodifferential operators with smooth symbols. The other class comprises the operators of multiplication by functions (“coefficients”) that may have discontinuities along a given collection of submanifolds (with boundary) of various dimensions; the submanifolds may intersect under nonzero angles. The situation is described formally by a stratification of the manifold $\mathcal M$. All the equivalence classes of irreducible representations of $\mathcal A$ are listed with a detailed proof. A solving composition series in $\mathcal A$ is constructed. This is a finite sequence of ideals $\{0\}=I_{-1}\subset I_0\subset\dots\subset I_N=\mathcal A$ whose subquotients $I_j/I_{j-1}$ are isomorphic to algebras of continuous functions with compact values; such operator-valued functions are defined on locally compact spaces and tend to zero at infinity.
Keywords: $C^*$-algebra, stratification, composition series, pseudodifferential operator.
@article{AA_2009_21_2_a8,
     author = {B. A. Plamenevskii},
     title = {Solvability of the algebra of pseudodifferential operators with piecewise smooth coefficients on a~smooth manifold},
     journal = {Algebra i analiz},
     pages = {214--263},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a8/}
}
TY  - JOUR
AU  - B. A. Plamenevskii
TI  - Solvability of the algebra of pseudodifferential operators with piecewise smooth coefficients on a~smooth manifold
JO  - Algebra i analiz
PY  - 2009
SP  - 214
EP  - 263
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_2_a8/
LA  - ru
ID  - AA_2009_21_2_a8
ER  - 
%0 Journal Article
%A B. A. Plamenevskii
%T Solvability of the algebra of pseudodifferential operators with piecewise smooth coefficients on a~smooth manifold
%J Algebra i analiz
%D 2009
%P 214-263
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_2_a8/
%G ru
%F AA_2009_21_2_a8
B. A. Plamenevskii. Solvability of the algebra of pseudodifferential operators with piecewise smooth coefficients on a~smooth manifold. Algebra i analiz, Tome 21 (2009) no. 2, pp. 214-263. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a8/

[1] Dynin A. S., “Inversion problem for singular integral operators: $C^*$-approach”, Proc. Nat. Acad. Sci. USA, 75 (1978), 4668–4670 | DOI | MR | Zbl

[2] Gokhberg I. Ts., Krupnik N. Ya., “Ob algebre, porozhdennoi odnomernymi singulyarnymi integralnymi operatorami s kusochno-nepreryvnymi koeffitsientami”, Funkts. anal. i ego pril., 4:3 (1970), 26–36 | MR | Zbl

[3] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | MR | Zbl

[4] Douglas R. G., Howe R., “On the $C^*$-algebra of Toeplitz operators on the quarterplane”, Trans. Amer. Math. Soc., 158 (1971), 203–217 | DOI | MR | Zbl

[5] Plamenevskii B. A., Senichkin V. N., “Razreshimye algebry operatorov”, Algebra i analiz, 6:5 (1994), 1–87 | MR | Zbl

[6] Schochet C., “Topological methods for $C^*$-algebras. I. Spectral sequences”, Pacific J. Math., 96:1 (1981), 193–211 | MR | Zbl

[7] Plamenevskii B. A., Senichkin V. N., “Spektr algebry psevdodifferentsialnykh operatorov s kusochno gladkimi simvolami”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 147–178 | MR | Zbl

[8] Plamenevskij B. A., Senichkin V. N.,, “On composition series in algebras of pseudodifferential operators and in algebras of Wiener–Hopf operators”, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., 11, Akad. Verlag, Berlin, 1996, 373–404 | MR | Zbl

[9] Plamenevskii B. A., Senichkin V. N., “Predstavleniya $C^*$-algebr psevdodifferentsialnykh operatorov na kusochno gladkikh mnogoobraziyakh”, Algebra i analiz, 13:6 (2001), 124–174 | MR | Zbl

[10] Plamenevskii B. A., Senichkin V. N., “O klasse psevdodifferentsialnykh operatorov na $\mathbb R^m$ i na stratifitsirovannykh mnogoobraziyakh”, Mat. sb., 191:5 (2000), 109–142 | MR | Zbl

[11] Plamenevskii B. A., Algebry psevdodifferentsialnykh operatorov, Nauka, M., 1986 | MR | Zbl

[12] Plamenevskii B. A., Senichkin V. N., “O spektre $C^*$-algebr, porozhdennykh psevdodifferentsialnymi operatorami s razryvnymi simvolami”, Izv. AN SSSR. Ser. mat., 47:6 (1983), 1263–1284 | MR | Zbl

[13] Plamenevskii B. A., Senichkin V. N., “O predstavleniyakh algebry psevdodifferentsialnykh operatorov s mnogomernymi razryvami v simvolakh”, Izv. AN SSSR. Ser. mat., 51:4 (1987), 833–859 | MR | Zbl

[14] Douglas R. G., Banach algebra techniques in operator theory, Pure Appl. Math., 49, Acad. Press, New York–London, 1972 | MR | Zbl

[15] Dynin A. S., “Multivariable Wiener–Hopf operators. I. Representations”, Integral Equations Operator Theory, 9:4 (1986), 537–569 | DOI | MR

[16] Simonenko I. B., “Operatory tipa svertki v konusakh”, Mat. sb., 74(116):2 (1967), 298–313 | MR | Zbl

[17] Senichkin V. N., “Spektr algebry psevdodifferentsialnykh operatorov na mnogoobrazii s gladkimi rebrami”, Algebra i analiz, 8:6 (1996), 105–147 | MR | Zbl

[18] Cordes H. O., “On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators”, J. Funct. Anal., 18:2 (1975), 115–131 | DOI | MR | Zbl

[19] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR