Pseudocharacters of braid groups, and the simplicity of linkings
Algebra i analiz, Tome 21 (2009) no. 2, pp. 113-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of pseudocharacters of Artin's braid groups is developed. A family of operators in the spaces of pseudocharacters of braid groups is introduced and studied, techniques for constructing new pseudocharacters for braid groups are described, and the structure of the space of pseudocharacters of the braid group is investigated.
Keywords: quasicharacter, pseudocharacter, braid group.
@article{AA_2009_21_2_a4,
     author = {A. V. Malyutin},
     title = {Pseudocharacters of braid groups, and the simplicity of linkings},
     journal = {Algebra i analiz},
     pages = {113--135},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a4/}
}
TY  - JOUR
AU  - A. V. Malyutin
TI  - Pseudocharacters of braid groups, and the simplicity of linkings
JO  - Algebra i analiz
PY  - 2009
SP  - 113
EP  - 135
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_2_a4/
LA  - ru
ID  - AA_2009_21_2_a4
ER  - 
%0 Journal Article
%A A. V. Malyutin
%T Pseudocharacters of braid groups, and the simplicity of linkings
%J Algebra i analiz
%D 2009
%P 113-135
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_2_a4/
%G ru
%F AA_2009_21_2_a4
A. V. Malyutin. Pseudocharacters of braid groups, and the simplicity of linkings. Algebra i analiz, Tome 21 (2009) no. 2, pp. 113-135. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a4/

[1] Alexander J. W., “A lemma on system of knotted curves”, Proc. Nat. Acad. Sci. USA, 9 (1923), 93–95 | DOI | Zbl

[2] Baader S., “Asymptotic Rasmussen invariant”, C. R. Math. Acad. Sci. Paris, 345 (2007), 225–228 | MR | Zbl

[3] Bestvina M., Fujiwara K., “Bounded cohomology of subgroups of mapping class groups”, Geom. Topol., 6 (2002), 69–89 | DOI | MR | Zbl

[4] Birman J. S., Menasco W. W., “Studying links via closed braids. IV. Composite links and split links”, Invent. Math., 102 (1990), 115–139 | DOI | MR | Zbl

[5] Birman J. S., Menasco W. W., “Erratum: ‘Studying links via closed braids. IV’ ”, Invent. Math., 160:2 (2005), 447–452 | DOI | MR | Zbl

[6] Birman J. S., Menasco W. W., “Studying links via closed braids. V. The unlink”, Trans. Amer. Math. Soc., 329:2 (1992), 585–606 | DOI | MR | Zbl

[7] Dehornoy P., Braids and self-distributivity, Progr. Math., 192, Birkhäuser, Basel, 2000 | MR | Zbl

[8] Dyer J., Grossman E., “The automorphism groups of the braid groups”, Amer. J. Math., 103:6 (1981), 1151–1169 | DOI | MR | Zbl

[9] Dynnikov I. A., “Arc-presentations of links: monotonic simplification”, Fund. Math., 190 (2006), 29–76 | DOI | MR | Zbl

[10] Erovenko I. V., “On bounded cohomology of amalgamated products of groups”, Int. J. Math. Math. Sci., 2004:40 (2004), 2103–2121 | DOI | MR | Zbl

[11] Faĭziev V. A., “The stability of the equation $f(xy)-f(x)-f(y)=0$”, Acta Math. Univ. Comenian. (N.S.), 69:1 (2000), 127–135 | MR

[12] Gambaudo J.-M., Ghys É., “Braids and signatures”, Bull. Soc. Math. France, 133:4 (2005), 541–579 | MR

[13] Grigorchuk R. I., “Some results on bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburgh, 1993), London Math. Soc. Lecture Note Ser., 204, Cambridge Univ. Press, Cambridge, 1995, 111–163 | MR | Zbl

[14] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | MR | Zbl

[15] Malyutin A. V., “Zakruchennost (zamknutykh) kos”, Algebra i analiz, 16:5 (2004), 59–91 | MR | Zbl

[16] Malyutin A. V., Netsvetaev N. Yu., “Poryadok Deornua na gruppe kos i preobrazovaniya zamknutykh kos”, Algebra i analiz, 15:3 (2003), 170–187 | MR | Zbl

[17] Markov A. A., “Osnovy algebraicheskoi teorii kos”, Tr. MIAN, 16, M., 1945, 3–53 | MR | Zbl