On the asymptotics of polynomials orthogonal with respect to a~measure with atoms on a~system of arcs
Algebra i analiz, Tome 21 (2009) no. 2, pp. 71-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider an absolutely continuous measure on a system of Jordan arcs and (closed) curves in the complex plane, assuming that this measure satisfies the Szegő condition on its support and that the support of the measure is the boundary of some (multiply connected) domain $\Omega$ containing infinity. Adding to the measure a finite number of discrete masses lying in $\Omega$ (off the support of the measure), we study the strong asymptotics of the polynomials orthogonal with respect to the perturbed measure. For this, we solve an extremal problem in a certain class of multivalued functions. Our goal is to give an explicit expression for the strong asymptotics on the support of the perturbed measure, as well as on the domain $\Omega$.
Keywords: orthogonal polynomials, strong asymptotics, multivalued functions, Hardy spaces.
@article{AA_2009_21_2_a2,
     author = {V. A. Kalyagin and A. A. Kononova},
     title = {On the asymptotics of polynomials orthogonal with respect to a~measure with atoms on a~system of arcs},
     journal = {Algebra i analiz},
     pages = {71--91},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_2_a2/}
}
TY  - JOUR
AU  - V. A. Kalyagin
AU  - A. A. Kononova
TI  - On the asymptotics of polynomials orthogonal with respect to a~measure with atoms on a~system of arcs
JO  - Algebra i analiz
PY  - 2009
SP  - 71
EP  - 91
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_2_a2/
LA  - ru
ID  - AA_2009_21_2_a2
ER  - 
%0 Journal Article
%A V. A. Kalyagin
%A A. A. Kononova
%T On the asymptotics of polynomials orthogonal with respect to a~measure with atoms on a~system of arcs
%J Algebra i analiz
%D 2009
%P 71-91
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_2_a2/
%G ru
%F AA_2009_21_2_a2
V. A. Kalyagin; A. A. Kononova. On the asymptotics of polynomials orthogonal with respect to a~measure with atoms on a~system of arcs. Algebra i analiz, Tome 21 (2009) no. 2, pp. 71-91. http://geodesic.mathdoc.fr/item/AA_2009_21_2_a2/

[1] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Mat. sb., 125(167):2 (1984), 231–258 | MR | Zbl

[2] Volberg A. L., Pekherstorfer F., Yuditskii P., “Asimptotika ortogonalnykh mnogochlenov v sluchae, ne pokryvaemom teoremoi Segë”, Funkts. anal. i ego pril., 40:4 (2006), 22–32 | MR | Zbl

[3] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[4] Gonchar A. A., “O skhodimosti approksimatsii Pade dlya nekotorykh klassov meromorfnykh funktsii”, Mat. sb., 97(139):4 (1975), 607–629 | MR | Zbl

[5] Dubrovin B. A., “Teta-funktsii i nelineinye uravneniya”, Uspekhi mat. nauk, 36:2 (1981), 11–80 | MR | Zbl

[6] Nikishin E. M., “Diskretnyi operator Shturma–Liuvillya i nekotorye zadachi teorii funktsii”, Tr. Semin. im. I. G. Petrovskogo, 10, 1984, 3–77 | MR | Zbl

[7] Rakhmanov E. A., “Ob asimptotike otnosheniya ortogonalnykh mnogochlenov”, Mat. sb., 103(145):2 (1977), 237–252 | MR | Zbl

[8] Rakhmanov E. A., “O skhodimosti diagonalnykh approksimatsii Pade”, Mat. sb., 104(146):2 (1977), 271–291 | MR | Zbl

[9] Bello Hernández M., Lopez Lagomasino G., “Ratio and relative asymptotics of polynomials orthogonal on an arc of the unit circle”, J. Approx. Theory, 92 (1998), 216–244 | DOI | MR | Zbl

[10] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52:11 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Kaliaguine V. A., “A note on the asymptotics of orthogonal polynomials on a complex arc: the case of a measure with a discrete part”, J. Approx. Theory, 80:1 (1995), 138–145 | DOI | MR | Zbl

[12] Kaliaguine V. A., Benzine R., “Sur la formule asymptotique des polynômes orthogonaux associés à une mesure concentrée sur un contour plus une partie discrète finie”, Bull. Soc. Math. Belg. Sér. B, 41:1 (1989), 29–46 | MR | Zbl

[13] Kaliaguine V. A., Kononova A. A., Strong asymptotics for polynomials orthogonal on a system of complex arcs and curves: Szegö condition on and a mass points off the system, Publ. ANO-410, Univ. Sci. Techn. Lille, 2000

[14] Khaldi R., Aggoune F., “On extremal polynomials on a system of curves and arcs”, J. Eng. Appl. Sci., 2:2 (2007), 372–376 | MR

[15] Kuijlaars A. B. J., McLaughlin K. T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188:2 (2004), 337–398 | DOI | MR | Zbl

[16] Li X., Pan K., “Asymptotic behavior of orthogonal polynomials corresponding to measure with discrete part off the unit circle”, J. Approx. Theory, 79 (1994), 54–71 | DOI | MR | Zbl

[17] Marcellán F., Maroni P., “Sur l'adjonction d'une masse de Dirac à une forme régulière et semi-classique”, Ann. Mat. Pura Appl. (4), 162 (1992), 1–22 | DOI | MR | Zbl

[18] Peherstorfer F., Yuditskii P., “Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points”, Proc. Amer. Math. Soc., 129:11 (2001), 3213–3220 | DOI | MR | Zbl

[19] Szegö G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1975 | MR

[20] Stahl H., Totik V., General orthogonal polynomials, Encyclopedia Math. Appl., 43, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[21] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3:2 (1969), 127–232 | DOI | MR | Zbl