Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
Algebra i analiz, Tome 21 (2009) no. 1, pp. 3-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A wide class of matrix elliptic second-order differential operators $\mathcal{A}=\mathcal{A}(\mathbf{x},\mathbf{D})$ with periodic coefficients, acting in $L_2(\mathbb{R}^d;\mathbb{C}^n)$, is studied. The operator $\mathcal{A}$ is assumed to admit a factorization of the form $\mathcal{A}=\mathcal{X}^*\mathcal{X}$, where $\mathcal{X}$ is a homogeneous first-order differential operator. Approximation for the operator exponential $e^{-\mathcal{A}\tau}$ as $\tau\rightarrow\infty$ in the $(L_2(\mathbb{R}^d;\mathbb{C}^n))$-operator norm is obtained, with error estimate of order of $\tau^{-1}$. In approximation, a corrector is taken into account. The result is applied to the study of homogenization for solutions of the Cauchy problem $\partial_\tau\mathbf{u}_\varepsilon=-\mathcal{A}_\varepsilon\mathbf{u}_\varepsilon$, where $\mathcal{A}_\varepsilon=\mathcal{A}(\mathbf{x}/\varepsilon,\mathbf{D})$. Approximation with corrector for $\mathbf{u}_\varepsilon$ in the $(L_2(\mathbb{R}^d;\mathbb{C}^n))$-norm is obtained for fixed $\tau>0$, with error estimate of order of $\varepsilon^2$.
Keywords: parabolic Cauchy problem, homogenization, effective operator, corrector.
@article{AA_2009_21_1_a0,
     author = {E. S. Vasilevskaya},
     title = {Homogenization with a~corrector for a~parabolic {Cauchy} problem with periodic coefficients},
     journal = {Algebra i analiz},
     pages = {3--60},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2009_21_1_a0/}
}
TY  - JOUR
AU  - E. S. Vasilevskaya
TI  - Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
JO  - Algebra i analiz
PY  - 2009
SP  - 3
EP  - 60
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2009_21_1_a0/
LA  - ru
ID  - AA_2009_21_1_a0
ER  - 
%0 Journal Article
%A E. S. Vasilevskaya
%T Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients
%J Algebra i analiz
%D 2009
%P 3-60
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2009_21_1_a0/
%G ru
%F AA_2009_21_1_a0
E. S. Vasilevskaya. Homogenization with a~corrector for a~parabolic Cauchy problem with periodic coefficients. Algebra i analiz, Tome 21 (2009) no. 1, pp. 3-60. http://geodesic.mathdoc.fr/item/AA_2009_21_1_a0/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978, 700 pp. | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhënnogo semeistva s uchëtom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchëtom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR

[7] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchëtom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[8] Zhikov V. V., “Spektralnyi podkhod k asimptoticheskim zadacham diffuzii”, Differents. uravneniya, 25:1 (1989), 44–50 | MR | Zbl

[9] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[10] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[11] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[12] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[13] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[14] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | MR | Zbl

[15] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. (2), 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl