Operator error estimates in the homogenization problem for nonstationary periodic equations
Algebra i analiz, Tome 20 (2008) no. 6, pp. 30-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

Matrix periodic differential operators (DO's) $\mathcal A=\mathcal A (\mathbf x,\mathbf D)$ in $L_2({\mathbb R}^d;{\mathbb C}^n)$ are considered. The operators are assumed to admit factorization of the form ${\mathcal A}={\mathcal X}^*{\mathcal X}$, where $\mathcal X$ is a homogeneous first order DO. Let ${\mathcal A}_\varepsilon={\mathcal A}(\varepsilon^{-1}{\mathbf x},{\mathbf D})$, $\varepsilon>0$. The behavior of the solutions ${\mathbf u}_\varepsilon({\mathbf x},\tau)$ of the Cauchy problem for the Schrödinger equation $i\partial_\tau{\mathbf u}_\varepsilon={\mathcal A}_\varepsilon{\mathbf u}_\varepsilon$, and also the behavior of those for the hyperbolic equation $\partial^2_\tau{\mathbf u}_\varepsilon=-{\mathcal A}_\varepsilon{\mathbf u}_\varepsilon$ is studied as $\varepsilon\to 0$. Let ${\mathbf u}_0$ be the solution of the corresponding homogenized problem. Estimates of order $\varepsilon$ are obtained for the $L_2({\mathbb R}^d;{\mathbb C}^n)$-norm of the difference ${\mathbf u}_\varepsilon-{\mathbf u}_0$ for a fixed $\tau\in{\mathbb R}$. The estimates are uniform with respect to the norm of initial data in the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$, where $s=3$ in the case of the Schrödinger equation and $s=2$ in the case of the hyperbolic equation. The dependence of the constants in estimates on the time $\tau$ is traced, which makes it possible to obtain qualified error estimates for small $\varepsilon$ and large $|\tau|=O(\varepsilon^{-\alpha})$ with appropriate $\alpha1$.
Keywords: Periodic operators, nonstationary equations, Cauchy problem, threshold effect, homogenization, effective operator.
@article{AA_2008_20_6_a1,
     author = {M. Sh. Birman and T. A. Suslina},
     title = {Operator error estimates in the homogenization problem for nonstationary periodic equations},
     journal = {Algebra i analiz},
     pages = {30--107},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_6_a1/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - T. A. Suslina
TI  - Operator error estimates in the homogenization problem for nonstationary periodic equations
JO  - Algebra i analiz
PY  - 2008
SP  - 30
EP  - 107
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_6_a1/
LA  - ru
ID  - AA_2008_20_6_a1
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A T. A. Suslina
%T Operator error estimates in the homogenization problem for nonstationary periodic equations
%J Algebra i analiz
%D 2008
%P 30-107
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_6_a1/
%G ru
%F AA_2008_20_6_a1
M. Sh. Birman; T. A. Suslina. Operator error estimates in the homogenization problem for nonstationary periodic equations. Algebra i analiz, Tome 20 (2008) no. 6, pp. 30-107. http://geodesic.mathdoc.fr/item/AA_2008_20_6_a1/

[BaPa] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984, 352 pp. | MR | Zbl

[BeLP] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978, 700 pp. | MR

[BS] Birman M. Sh., Solomyak M. Z., “Otsenki raznosti drobnykh stepenei samosopryazhënnykh operatorov pri neogranichennykh vozmuscheniyakh”, Issledovaniya po lineinym operatoram i teorii funktsii. 18, Zap. nauch. semin. LOMI, 178, 1989, 120–145 | MR | Zbl

[BSu1] Birman M., Suslina T., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[BSu2] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[BSu3] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchëtom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR

[BSu4] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchëtom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR

[BSu5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchëtom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR

[BSu6] Birman M. Sh., Suslina T. A., “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella v sluchae postoyannoi magnitnoi pronitsaemosti”, Funkts. anal. i ego pril., 41:2 (2007), 3–23 | MR | Zbl

[V] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchëte korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR

[Zh] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[ZhKO] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993, 464 pp. | MR | Zbl

[ZhPas1] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[ZhPas2] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[Ka] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[Pas] Pastukhova S. E., “O nekotorykh otsenkakh iz usredneniya zadach teorii uprugosti”, Dokl. RAN, 406:5 (2006), 604–608 | MR | Zbl

[Sa] Sanches-Palensia E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[Su1] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | MR | Zbl

[Su2] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Nonlinear Equations and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl

[Su3] Suslina T. A., “Ob usrednenii periodicheskoi sistemy Maksvella”, Funkts. anal. i ego pril., 38:3 (2004), 90–94 | MR | Zbl

[Su4] Suslina T. A., “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella”, Algebra i analiz, 16:5 (2004), 162–244 | MR

[Su5] Suslina T. A., “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella s uchëtom korrektora”, Algebra i analiz, 19:3 (2007), 183–235 | MR

[Sh] Shterenberg R. G., “O strukture nizhnego kraya spektra periodicheskogo magnitnogo operatora Shrëdingera s malym magnitnym potentsialom”, Algebra i analiz, 17:5 (2005), 232–243 | MR