Some remarks on spherical harmonics
Algebra i analiz, Tome 20 (2008) no. 4, pp. 64-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several observations on spherical harmonics and their nodal sets are presented: a construction for harmonics with prescribed zeros; a natural representation for harmonics on $\mathbb S^2$; upper and lower bounds for the nodal length and the inner radius (the upper bounds are sharp); the sharp upper bound for the number of common zeros of two spherical harmonics on $\mathbb S^2$; the mean Hausdorff measure of the intersection of $k$ nodal sets for harmonics of different degrees on $\mathbb S^m$, where $k\leq m$ (in particular, the mean number of common zeros of $m$ harmonics).
Keywords: Nodal set, spherical harmonic, Hausdorff measure.
@article{AA_2008_20_4_a2,
     author = {V. M. Gichev},
     title = {Some remarks on spherical harmonics},
     journal = {Algebra i analiz},
     pages = {64--86},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_4_a2/}
}
TY  - JOUR
AU  - V. M. Gichev
TI  - Some remarks on spherical harmonics
JO  - Algebra i analiz
PY  - 2008
SP  - 64
EP  - 86
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_4_a2/
LA  - ru
ID  - AA_2008_20_4_a2
ER  - 
%0 Journal Article
%A V. M. Gichev
%T Some remarks on spherical harmonics
%J Algebra i analiz
%D 2008
%P 64-86
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_4_a2/
%G ru
%F AA_2008_20_4_a2
V. M. Gichev. Some remarks on spherical harmonics. Algebra i analiz, Tome 20 (2008) no. 4, pp. 64-86. http://geodesic.mathdoc.fr/item/AA_2008_20_4_a2/

[1] Arnold V. I., Lektsii ob uravneniyakh s chastnymi proizvodnymi, FAZIS, M., 1997 | MR

[2] Arnold V. I. i dr., “Nekotorye nereshennye zadachi teorii differentsialnykh uravnenii i matematicheskoi fiziki”, Uspekhi mat. nauk, 44:4(268) (1989), 191–202 | MR

[3] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, vol. II, McGraw-Hill Book Co., Inc., New York etc., 1953

[4] Bérard P., Volume des ensembles nodaux des fonctions propres du laplacien, Bony–Sjöstrand–Meyer Seminar (1984–1985), Exp. No. 14, École Polytech., Palaiseau, 1985 | MR

[5] Brüning J., “Über Knoten von Eigenfunktionen des Laplace–Beltrami Operators”, Math. Z., 158 (1978), 15–21 | DOI | MR | Zbl

[6] Cheng S.-Y., “Eigenfunctions and nodal sets”, Comment. Math. Helv., 51 (1976), 43–55 | DOI | MR | Zbl

[7] Courant R., Hilbert D., Methoden der mathematischen Physik, Bd. 1, Grundlehren Math. Wiss., 12, Springer-Verlag, Berlin, 1931 | Zbl

[8] Donnelly H., Fefferman C., “Nodal sets of eigenfunctions on Riemannian manifolds”, Invent. Math., 93:1 (1988), 161–183 | DOI | MR | Zbl

[9] Eremenko A., Jakobson D., Nadirashvili N., On nodal sets and nodal domains on $\mathbb S^2$ and $\mathbb R^2$, Preprint arXiv:math.SP/0611627

[10] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer, Berlin, 1969 | MR | Zbl

[11] Gichev V. M., “A note on common zeroes of Laplace–Beltrami eigenfunctions”, Ann. Global Anal. Geom., 26 (2004), 201–208 | DOI | MR | Zbl

[12] Lewy H., “On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere”, Comm. Partial Differential Equations, 2:12 (1977), 1233–1244 | DOI | MR | Zbl

[13] Mangoubi D., On the inner radius of nodal domains, arXiv:math/0511329v3

[14] Mangoubi D., Local asymmetry and the inner radius of nodal domains, arXiv:math/0703663v3 | MR

[15] Maxwell J. C., A treatise on electricity and magnetism, vol. 1, Dover Publ., Inc., New York, 1954 | MR | Zbl

[16] Neuheisel J., The asymptotic distribution of nodal sets on spheres, Johns Hopkins Ph. D. thesis, 2000

[17] Rudnick Z., Wigman I., On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Preprint arXiv:math-ph/0609072v2 | MR

[18] Savo A., “Lower bounds for the nodal length of eigenfunctions of the Laplacian”, Ann. Global Anal. Geom., 19 (2001), 133–151 | DOI | MR | Zbl

[19] Stein E., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[20] Sylvester J. J., “Note on spherical harmonics”, Philos. Mag., 2 (1876), 291–307

[21] Szegö G., Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1959 | MR | Zbl

[22] Yau S. T. (ed.), Seminar on Differential Geometry, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982 | MR | Zbl