Fesenko Reciprocity Map
Algebra i analiz, Tome 20 (2008) no. 3, pp. 112-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

In recent papers Fesenko has defined the non-Abelian local reciprocity map for every totally ramified arithmetically profinite ($APF$) Galois extension of a given local field $K$, by extending the work of Hazewinkel and Neukirch–Iwasawa. The theory of Fesenko extends the previous non-Abelian generalizations of local class field theory given by Koch –de Shalit and by A. Gurevich. In this paper, which is research-expository in nature, we give a detailed account of Fesenko's work, including all the skipped proofs.
Keywords: local fields, higher-ramification theory, $APF$-extensions Fontaine–Wintenberger field of norms, Fesenko reciprocity map, non-Abelian local class field theory, $p$-adic local Langlands correspondence.
@article{AA_2008_20_3_a4,
     author = {K. I. Ikeda and E. Serbest},
     title = {Fesenko {Reciprocity} {Map}},
     journal = {Algebra i analiz},
     pages = {112--162},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a4/}
}
TY  - JOUR
AU  - K. I. Ikeda
AU  - E. Serbest
TI  - Fesenko Reciprocity Map
JO  - Algebra i analiz
PY  - 2008
SP  - 112
EP  - 162
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a4/
LA  - en
ID  - AA_2008_20_3_a4
ER  - 
%0 Journal Article
%A K. I. Ikeda
%A E. Serbest
%T Fesenko Reciprocity Map
%J Algebra i analiz
%D 2008
%P 112-162
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a4/
%G en
%F AA_2008_20_3_a4
K. I. Ikeda; E. Serbest. Fesenko Reciprocity Map. Algebra i analiz, Tome 20 (2008) no. 3, pp. 112-162. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a4/

[1] Fesenko I. B., “Local reciprocity cycles”, Invitation to Higher Local Fields (Münster, 1999), Geom. Topol. Monogr., 3, eds. I. B. Fesenko and M. Kurihara, Geom. Topol. Publ., Coventry, 2000, 293–298 | MR | Zbl

[2] Fesenko I. B., “Nonabelian local reciprocity maps”, Class Field Theory — Its Centenary and Prospect (Tokyo, 1998), Adv. Stud. Pure Math., 30, ed. K. Miyake, Math. Soc. Japan, Tokyo, 2001, 63–78 | MR | Zbl

[3] Fesenko I. B., “On the image of noncommutative local reciprocity map”, Homology, Homotopy Appl., 7 (2005), 53–62 | MR | Zbl

[4] Fesenko I. B., Vostokov S. V., Local fields and their extensions. A constructive approach, Transl. Math. Monogr., 121, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[5] Fontaine J.-M., Wintenberger J.-P., “Le “corps des normes” de certaines extensions algébriques de corps locaux”, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A367–A370. | MR

[6] Fontaine J.-M., Wintenberger J.-P., “Extensions algébriques et corps des normes des extensions $APF$ des corps locaux”, C. R. Acad. Sci. Paris Sér. A-B, 288 (1979), A441–A444 | MR

[7] Gurevich A., Description of Galois groups of local fields with the aid of power series, Ph.D. Thesis, Humboldt Univ., Berlin, 1998

[8] Hazewinkel M., “Local class field theory is easy”, Adv. Math., 18 (1975), 148–181 | DOI | MR | Zbl

[9] Ikeda K. I., Ikeda M., “Two lemmas on formal power series”, Turkish J. Math., 23 (1999), 435–440 | MR | Zbl

[10] Ikeda K. I., Serbest E., Non-abelian local class field theory, Preprint

[11] Ikeda K. I., Serbest E., paper A remark on Sen's theory on Galois representations, in preparation

[12] Iwasawa K., Local class field theory, Oxford Univ. Press, Clarendon Press, New York, 1986 | MR | Zbl

[13] Koch H., de Shalit E., “Metabelian local class field theory”, J. Reine Angew. Math., 478 (1996), 85–106 | MR | Zbl

[14] Laubie F., “Une théorie du corps de classes local non abélien”, Compositio Math., 143 (2007), 339–362 | MR | Zbl

[15] Neukirch J., Class field theory, Grundlehren Math. Wiss., 280, Springer-Verlag, Berlin, 1986 | MR | Zbl

[16] Serre J.-P., Corps locaux, $2^{\rm me}$ éd., Publ. Inst. Math. Univ. Nancago, 8, Actualités Sci. Indust., 1296, Hermann, Paris, 1968 | MR

[17] Wintenberger J.-P., “Le corps des normes de certaines extensions infinies de corps locaux; applications”, Ann. Sci. École Norm. Sup. (4), 16 (1983), 59–89 | MR | Zbl