On the maximum principle for harmonic functions
Algebra i analiz, Tome 20 (2008) no. 3, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some generalizations of the maximum principle for harmonic functions are discussed.
Keywords: Harmonic functions, maximum principle.
@article{AA_2008_20_3_a0,
     author = {A. Vagharshakyan},
     title = {On the maximum principle for harmonic functions},
     journal = {Algebra i analiz},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_3_a0/}
}
TY  - JOUR
AU  - A. Vagharshakyan
TI  - On the maximum principle for harmonic functions
JO  - Algebra i analiz
PY  - 2008
SP  - 1
EP  - 17
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_3_a0/
LA  - en
ID  - AA_2008_20_3_a0
ER  - 
%0 Journal Article
%A A. Vagharshakyan
%T On the maximum principle for harmonic functions
%J Algebra i analiz
%D 2008
%P 1-17
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_3_a0/
%G en
%F AA_2008_20_3_a0
A. Vagharshakyan. On the maximum principle for harmonic functions. Algebra i analiz, Tome 20 (2008) no. 3, pp. 1-17. http://geodesic.mathdoc.fr/item/AA_2008_20_3_a0/

[M] Mandelbrojt S., Séries de Dirichlet. Principes et méthodes, Monogr. Internat. Math. Modernes, 11, Gauthier-Villars, Paris, 1969 | MR | Zbl

[C] Carleson L., Selected problems on exceptional sets, Van Nostrand Math. Stud., 13, Van Nostrand Co., Inc., Princeton, NJ, etc., 1967 | MR | Zbl

[S] Stein E. M., Singular integrals and diffferentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR

[V1] Vagarshakyan A., “O printsipe maksimuma”, Izv. AN Armenii. Mat., 26(1991):4 (1992), 300–308 | MR

[V2] Vagarshakyan A., “Granichnye svoistva nekotorykh klassov garmonicheskikh funktsii”, Izv. AN Arm. SSR. Mat., 10:1 (1975), 54–60 | MR | Zbl

[V3] Shahgholian Henrik, Vagharshakyan Ashot, “On Phragmen Lindelöf principle”, Complex Variables Theory Appl., 46:4 (2001), 295–305 | MR | Zbl

[H] Hörmander L., The analysis of linear partial differential operators. I, Grundlehren Math. Wiss., 256, Springer-Verlag, Berlin, 1983 | MR | Zbl

[L] Landkof H., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl