Lagrange's problem on mean motion
Algebra i analiz, Tome 20 (2008) no. 2, pp. 218-225.

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous mean motion problem, dating back to Lagrange, is about the existence of the average speed for the amplitude of any exponential polynomial with exponents on the imaginary axis, whenever the variable moves along a horizontal line. This problem was completely solved by B. Jessen and H. Tornehave in Acta Math. 77, 1945. Here, we give a simple version of that proof.
Keywords: Mean motion, exponential polynomial, Lagrange's conjecture, Weierstrass preparation theorem.
@article{AA_2008_20_2_a7,
     author = {S. Yu. Favorov},
     title = {Lagrange's problem on mean motion},
     journal = {Algebra i analiz},
     pages = {218--225},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a7/}
}
TY  - JOUR
AU  - S. Yu. Favorov
TI  - Lagrange's problem on mean motion
JO  - Algebra i analiz
PY  - 2008
SP  - 218
EP  - 225
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a7/
LA  - ru
ID  - AA_2008_20_2_a7
ER  - 
%0 Journal Article
%A S. Yu. Favorov
%T Lagrange's problem on mean motion
%J Algebra i analiz
%D 2008
%P 218-225
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a7/
%G ru
%F AA_2008_20_2_a7
S. Yu. Favorov. Lagrange's problem on mean motion. Algebra i analiz, Tome 20 (2008) no. 2, pp. 218-225. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a7/

[1] Bohl P., “Über ein in der Theorie der säkularen Störungen vorkommendes Problem”, J. Reine Angew. Math., 135 (1909), 189–283 | Zbl

[2] Bohr H., “Zur Theorie der fast periodischen Funktionen. I, II”, Acta Math., 45 (1925), 29–127 | DOI | MR

[3] Bernstein F., “Über eine Anwendung der Mengenlehre auf ein aus der Theorie der säkularen Störungen herrührendes Problem”, Math. Ann., 71 (1912), 417–439 | DOI | Zbl

[4] Doss R., “On mean motion”, Amer. J. Math., 79:2 (1957), 389–396 | DOI | MR | Zbl

[5] Hartman Ph., “Mean motions and almost periodic functions”, Trans. Amer. Math. Soc., 46 (1939), 66–81 | DOI | MR

[6] Kholl M., Teoriya grupp, IL, M., 1962

[7] Jessen B., Tornehave H., “Mean motions and zeros of almost periodic functions”, Acta Math., 77 (1945), 137–279 | DOI | MR | Zbl

[8] Lagrange J. L., “Théorie des variations séqulaires des éléments des planètes, I, II”, Nouveaux Mémorires de l'Académie de Berlin (1781, 1782), Oeuvres de Lagrange, vol. 5, Gauthier-Villars, Paris, 1870, 123–344

[9] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[10] Shabat B. V., Vvedenie v kompleksnyi analiz, ch. 2, Nauka, M., 1985 | MR

[11] Weyl H., “Über die Gleichverteilung von Zahlen mod Eins”, Math. Ann., 77 (1916), 313–352 | DOI | MR | Zbl

[12] Weyl H., “Mean motion. I”, Amer. J. Math., 60 (1938), 889–896 | DOI | MR

[13] Weyl H., “Mean motion. II”, Amer. J. Math., 61 (1939), 143–148 | DOI | MR