Quasi-analytic Carleman classes on bounded domains
Algebra i analiz, Tome 20 (2008) no. 2, pp. 178-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2008_20_2_a6,
     author = {K. V. Trounov and R. S. Yulmukhametov},
     title = {Quasi-analytic {Carleman} classes on bounded domains},
     journal = {Algebra i analiz},
     pages = {178--217},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a6/}
}
TY  - JOUR
AU  - K. V. Trounov
AU  - R. S. Yulmukhametov
TI  - Quasi-analytic Carleman classes on bounded domains
JO  - Algebra i analiz
PY  - 2008
SP  - 178
EP  - 217
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a6/
LA  - ru
ID  - AA_2008_20_2_a6
ER  - 
%0 Journal Article
%A K. V. Trounov
%A R. S. Yulmukhametov
%T Quasi-analytic Carleman classes on bounded domains
%J Algebra i analiz
%D 2008
%P 178-217
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a6/
%G ru
%F AA_2008_20_2_a6
K. V. Trounov; R. S. Yulmukhametov. Quasi-analytic Carleman classes on bounded domains. Algebra i analiz, Tome 20 (2008) no. 2, pp. 178-217. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a6/

[1] Dynkin E. M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy, Teoriya funktsii i funktsionalnyi analiz, Tr. 7-i zimnei shkoly (Drogobych, 1974), Tsentr. ekonom.-mat. in-t AN SSSR, M., 1976, 40–73 | MR

[2] Hadamard J., Sur le module maximum d'une fonction et de ses dérivées, C. R. Séances Soc. Math. France, 42, 1914

[3] Carleman T., Les fonctions quasi analytiques, Paris, 1926

[4] Ostrowski A., “Über quasianalytische Funktionen und Bestimmtheit asymptotischer Entwickelungen”, Acta Math., 53 (1930), 181–266 | DOI | MR

[5] Mandelbrojt S., Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, Paris, 1952 | MR | Zbl

[6] R.-Salinas Baltasar, “Functions with null moments”, Rev. Acad. Ci. Madrid, 49 (1955), 331–368 (Spanish) | MR

[7] Korenblyum B. I., “Kvazianaliticheskie klassy funktsii v kruge”, Dokl. AN SSSR, 164:1 (1965), 36–39 | Zbl

[8] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Mat. sb., 130:4 (1986), 500–519 | MR | Zbl

[9] Yulmukhametov R. S., Approksimatsiya subgarmonicheskikh funktsii i primeneniya, Dis. na soisk. uchen. st. dokt. fiz.-mat. nauk, MIAN SSSR im. V. Steklova, M., 1987

[10] Sebastyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika. Period. sb. per. in. st., 1:1 (1957), 60–77

[11] Sibony N., “Approximation polynomiale pondérée dans un domaine d'holomorphie de $\mathbb C^n$,”, Ann. Inst. Fourier (Grenoble), 26:2 (1976), 71–99 | MR

[12] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[13] Bitsadze A. V., Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1972 | MR