Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type
Algebra i analiz, Tome 20 (2008) no. 2, pp. 70-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R\colon V^{\otimes 2}\to V^{\otimes 2}$ be a Hecke type solution of the quantum Yang–Baxter equation (a Hecke symmetry). Then, the Hilbert–Poincaré series of the associated $R$-exterior algebra of the space $V$ is the ratio of two polynomials of degrees $m$ (numerator) and $n$ (denominator). Under the assumption that $R$ is skew-invertible, a rigid quasitensor category $\mathrm{SW}(V_{(m|n)})$ of vector spaces is defined, generated by the space $V$ and its dual $V^*$, and certain numerical characteristics of its objects are computed. Moreover, a braided bialgebra structure is introduced in the modified reflection equation algebra associated with $R$, and the objects of the category $\mathrm{SW}(V_{(m|n)})$ are equipped with an action of this algebra. In the case related to the quantum group $U_q(sl(m))$, the Poisson counterpart of the modified reflection equation algebra is considered and the semiclassical term of the pairing defined via the categorical (or quantum) trace is computed.
Keywords: (Modified) reflection equation algebra, braiding, Hecke symmetry, Hilbert-Poincaré series, birank, Schur–Weyl category, (quantum) trace, (quantum) dimension, braided bialgebra.
@article{AA_2008_20_2_a3,
     author = {D. I. Gurevich and P. N. Pyatov and P. A. Saponov},
     title = {Representation theory of (modified) {Reflection} {Equation} {Algebra} of $GL(m|n)$ type},
     journal = {Algebra i analiz},
     pages = {70--133},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a3/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. N. Pyatov
AU  - P. A. Saponov
TI  - Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type
JO  - Algebra i analiz
PY  - 2008
SP  - 70
EP  - 133
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a3/
LA  - ru
ID  - AA_2008_20_2_a3
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. N. Pyatov
%A P. A. Saponov
%T Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type
%J Algebra i analiz
%D 2008
%P 70-133
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a3/
%G ru
%F AA_2008_20_2_a3
D. I. Gurevich; P. N. Pyatov; P. A. Saponov. Representation theory of (modified) Reflection Equation Algebra of $GL(m|n)$ type. Algebra i analiz, Tome 20 (2008) no. 2, pp. 70-133. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a3/

[AG] Akueson P., Gurevich D., “Dual quasitriangular structures related to the Temperley–Lieb algebra”, Lie Groups and Lie Algebras, Math. Appl., 433, Kluwer Acad. Publ., Dordrecht, 1998, 1–16 | MR | Zbl

[BR] Berele A., Regev A., “Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras”, Adv. Math., 64 (1987), 118–175 | DOI | MR | Zbl

[BG] Braverman A., Gaitsgory D., “The Poincaré–Birkhoff–Witt theorem for quadratic algebras of Koszul type”, J. Algebra, 181 (1996), 315–328 | DOI | MR | Zbl

[CP] Chari V., Pressley A., A guide to quantum groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[C] Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl

[DGH] Dabrowski L., Grosse H., Hajac P., “Strong connections and Chern–Connes pairing in the Hopf–Galois theory”, Comm. Math. Phys., 220 (2001), 301–331 | DOI | MR | Zbl

[Da] Davydov A. A., “Totally positive sequences and $\mathrm{R}$-matrix quadratic algebras”, J. Math. Sci., 100 (2001), 1871–1876 | DOI | MR

[DGG] Delius G. W., Gardner C., Gould M. D., “The structure of quantum Lie algebras for the classical series $\mathrm{B_l}$, $\mathrm{C_l}$ and $\mathrm{D_l}$”, J. Phys. A, 31 (1998), 1995–2019 | DOI | MR | Zbl

[D] Donin J., Double quantization on coadjoint representations of semisimple Lie groups and their orbits, ArXiv: QA/9909160

[DGS] Donin J., Gurevich D., Shnider S., “Double quantization on some orbits in the coadjoint representations of simple Lie groups”, Comm. Math. Phys., 204 (1999), 39–60 | DOI | MR | Zbl

[DM] Donin J., Mudrov A., “Explicit equivariant quantization on coadjoint orbits of $\mathrm{GL}(n,\mathbb C)$”, Lett. Math. Phys., 62 (2002), 17–32 | DOI | MR | Zbl

[Dr] Selecta Math. Soviet., 11:4 (1992), 317–326 | MR | MR

[DH] Dung N. P, Hai P. H., “On the Poincaré series of quadratic algebras associated to Hecke symmetries”, Int. Math. Res. Not., 2003:40, 2193–2203 | DOI | MR | Zbl

[FP] Faddeev L., Pyatov P., “The differential calculus on quantum linear groups”, Amer. Math. Soc. Transl. Ser. 2, 175, Amer. Math. Soc., Providence, RI, 1996, 35–47 | MR | Zbl

[FH] Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., 129, Springer-Verlag, New York, 1991 | MR | Zbl

[FRT] Leningrad Math. J., 1:1 (1990), 193–225 | MR | Zbl

[GM] Gomez X., Majid S., “Braided Lie algebras and bicovariant differential calculi over coquasitriangular Hopf algebras”, J. Algebra, 261 (2003), 334–388 | DOI | MR | Zbl

[G1] Soviet J. Contemp. Math. Anal., 18:4 (1983), 57–70 | MR

[G2] Gourevitch D., “Équation de Yang–Baxter et quantification des cocycles”, C. R. Acad. Sci. Paris Sér. I Math., 310 (1990), 845–848 | MR | Zbl

[G3] Leningrad Math. J., 2:4 (1991), 801–828 | MR | Zbl | Zbl

[G4] Gurevich D., “Braided modules and reflection equations”, Quantum Groups and Quantum Spaces (Warsaw, 1995), Banach Center Publ., 40, Polish Acad. Sci., Warsaw, 1997, 99–110 | MR | Zbl

[GLS1] Gurevich D., Leclercq R., Saponov P., “Traces in braided categories”, J. Geom. Phys., 44 (2002), 251–278 | DOI | MR | Zbl

[GLS2] Gurevich D., Leclercq R., Saponov P., “$q$-index on braided non-commutative spheres”, J. Geom. Phys., 53 (2005), 392–420 | MR | Zbl

[GPS1] St. Petersburg Math. J., 17:1 (2006), 119–135 | DOI | MR | Zbl

[GPS2] Gurevich D., Pyatov P., Saponov P., “Kvantovye matrichnye algebry $\mathrm{GL(m\setminus n)}$ tipa: struktura kharakteristicheskoi podalgebry i ee spektralnaya parametrizatsiya”, Teor. i mat. fiz., 147:1 (2006), 14–46 | MR

[GS1] Gurevich D., Saponov P., “Quantum line bundles via Cayley–Hamilton identity”, J. Phys. A, 34 (2001), 4553–4569 | DOI | MR | Zbl

[GS2] Theoret. and Math. Phys., 139:1 (2004), 486–499 | DOI | MR

[GS3] Gurevich D., Saponov P., “Geometry of non-commutative orbits related to Hecke symmetries”, Proc. Internat. Conf. on Quantum Groups at Technion, Contemp. Math. (to appear) | MR

[GR] Gutt S., Rawnsley J., “Traces for star products on symplectic manifolds”, J. Geom. Phys., 42 (2002), 12–18 | DOI | MR | Zbl

[H] Phung Ho Hai, “Poincaré series of quantum spaces associated to Hecke operators”, Acta Math. Vietnam, 24 (1999), 235–246 | MR | Zbl

[I] Phys. Particles Nuclei, 26 (1995), 501–526

[IOP] Isaev A., Ogievetsky O., Pyatov P., “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A, 32 (1999), L115–L121 | DOI | MR | Zbl

[IP] Isaev A., Pyatov P., “Covariant differential complexes on quantum linear groups”, J. Phys. A, 28 (1995), 2227–2246 | DOI | MR | Zbl

[KT] Khoroshkin S., Tolstoy V., “Universal $\mathrm{R}$-matrix for quantized (super-) algebras”, Comm. Math. Phys., 141 (1991), 599–617 | DOI | MR | Zbl

[K] St. Petersburg Math. J., 6:2 (1995), 367–374 | MR | Zbl

[KS] Kulish P., Sklyanin E., “Algebraic structure related to the reflection equations”, J. Phys. A, 25 (1992), 5963–5975 | DOI | MR | Zbl

[LW] Lu J.-H., Weinstein A., “Poisson Lie groups, dressing transformations, and Bruhat decompositions”, J. Differential Geom., 31 (1990), 501–526 | MR | Zbl

[LS] Lyubashenko V., Sudbery A., “Quantum supergroups of $\mathrm{GL(m\setminus n)}$ type: differential forms, Koszul complexes, and Berezinians”, Duke Math. J., 90 (1997), 1–62 | DOI | MR | Zbl

[Mac] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Math. Monogr. Oxford Sci. Publ., Clarendon Press, Oxford Univ. Press, New York, 1995 | MR | Zbl

[M] Majid S., Foundations of quantum group theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[Mu1] Mudrov A., “Characters of $\mathrm{U_q(gl(n))}$-reflection equation algebra”, Lett. Math. Phys., 60 (2002), 283–291 | DOI | MR | Zbl

[Mu2] Mudrov A., On quantization of Semenov-Tian-Shansky Poisson bracket on simple algebraic groups, ArXiv: QA/0412360 | MR

[O] Ogievetsky O., “Uses of quantum spaces”, Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., 294, Amer. Math. Soc., Providence, RI, 2002, 161–232 | MR | Zbl

[OP1] Ogievetsky O., Pyatov P., “Lecture on Hecke algebras”, Symmetries and Integrable Systems (Dubna, Russia, June 8–11, 1999), JINR, Dubna D2,5-2000,218, 39–88 (English)

[OP2] Ogievetsky O., Pyatov P., Orthogonal and symplectic quantum matrix algebras and Cayley–Hamilton theorem for them, ArXiv: QA/0511618

[P] Podles P., “Quantum spheres”, Lett. Math. Phys., 14 (1987), 193–202 | DOI | MR | Zbl

[PP] Polishchuk A., Positselski L., Quadratic algebras, Univ. Lecture Ser., 37, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[R] Rieffel M., “Deformation quantization of Heisenberg manifolds”, Comm. Math. Phys., 122 (1989), 531–562 | DOI | MR | Zbl

[S] Saponov P., “The Weyl approach to the representation theory of reflection equation algebra”, J. Phys. A, 37 (2004), 5021–5046 | DOI | MR | Zbl

[STS] Semenov-Tian-Shansky M., “Dressing transformations and Poisson group actions”, Publ. Res. Inst. Math. Sci., 21 (1985), 1237–1260 | DOI | MR

[Sh] Sheu A., “Quantization of the Poisson SU(2) and its Poisson homogeneous space — the 2-sphere”, Comm. Math. Phys., 135 (1991), 217–232 | DOI | MR | Zbl

[St] Stembridge J. R., “A characterization of supersymmetric polynomials”, J. Algebra, 95 (1985), 439–444 | DOI | MR | Zbl

[T] Turaev V., Quantum invariants of knots and 3-manifolds, de Gruyter Stud. Math.,, 18, W. de Gruyter and Co., Berlin, 1994 | MR | Zbl

[We] Wenzl H., “Hecke algebras of type $\mathrm{A_n}$ and subfactors”, Invent. Math., 92 (1988), 349–383 | DOI | MR | Zbl

[Wo] Woronowicz S., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl

[Z] Zhang R. B., “Structure and representations of the quantum general linear supergroup”, Comm. Math. Phys., 195 (1998), 525–547 | DOI | MR | Zbl