Model functions with nearly prescribed modulus
Algebra i analiz, Tome 20 (2008) no. 2, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Theta$ be an inner function on the upper half-plane, and let $K_\Theta=H^2\ominus\Theta H^2 $ be the corresponding model subspace. A nonnegative measurable function $\omega$ is said to be strongly admissible for $K_{\Theta}$ if there exists a nonzero function $f\in K_{\Theta}$ with $|f|\asymp\omega$. Certain condition sufficient for strong admissibility are given in the case where $\Theta$ is meromorphic.
Keywords: Admissible function, Beurling–Mallivin theorem, model subspace, logarithmic integral.
@article{AA_2008_20_2_a0,
     author = {Yu. S. Belov},
     title = {Model functions with nearly prescribed modulus},
     journal = {Algebra i analiz},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_2_a0/}
}
TY  - JOUR
AU  - Yu. S. Belov
TI  - Model functions with nearly prescribed modulus
JO  - Algebra i analiz
PY  - 2008
SP  - 3
EP  - 18
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_2_a0/
LA  - ru
ID  - AA_2008_20_2_a0
ER  - 
%0 Journal Article
%A Yu. S. Belov
%T Model functions with nearly prescribed modulus
%J Algebra i analiz
%D 2008
%P 3-18
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_2_a0/
%G ru
%F AA_2008_20_2_a0
Yu. S. Belov. Model functions with nearly prescribed modulus. Algebra i analiz, Tome 20 (2008) no. 2, pp. 3-18. http://geodesic.mathdoc.fr/item/AA_2008_20_2_a0/

[BB] Baranov A. D., Borichev A. A., Entire functions of exponential type with prescribed modulus on the real axis, ne opubl.

[Bl1] Belov Yu. S., Khavin V. P., “K teoreme I. I. Privalova o preobrazovanii Gilberta lipshitsevykh funktsii”, Mat. Fiz. Anal. Geom., 11:4 (2004), 380–407 | MR | Zbl

[Bl2] Belov Yu. S., “Kriterii dopustimosti mazhorant dlya modelnykh podprostranstv s bystro rastuschim argumentom porozhdayuschei vnutrennei funktsii”, Zap. nauch. semin. POMI, 345, 2007, 55–84 | MR

[Bl3] Belov Yu. S., “Neobkhodimye usloviya dopustimosti mazhorant dlya nekotorykh modelnykh podprostranstv”, Algebra i analiz, 20:4 (2008), 1–26 | MR

[BH] Baranov A. D., Khavin V. P., “Dopustimye mazhoranty dlya modelnykh podprostranstv i argumenty vnutrennikh funktsii”, Funkts. anal. i ego pril., 40:4 (2006), 3–21 | MR | Zbl

[BBH] Baranov A. D., Borichev A. A., Havin V. P., “Majorants of meromorphic functions with fixed poles”, Indiana Univ. Math. J., 56 (2007), 1595–1628 | DOI | MR | Zbl

[Cima] Cima J. A., Ross W. T., The backward shift on the Hardy space, Math. Surveys Monogr., 79, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[D] Dyakonov K. M., “Moduli i argumenty analiticheskikh funktsii iz podprostranstv v $H^p$, invariantnykh dlya operatora obratnogo sdviga”, Sib. mat. zh., 31:6 (1990), 64–79 | MR

[dB] de Branges L., Hilbert spaces of entire functions, Prentice-Hall, Englewood Cliffs (NJ), 1968 | MR | Zbl

[HM1] Havin V. P., Mashreghi J., “Admissible majorants for model subspaces of $H^2$. I. Slow winding of the generating inner function”, Canad. J. Math., 55 (2003), 1231–1263 | MR | Zbl

[HM2] Havin V. P., Mashreghi J., “Admissible majorants for model subspaces of $H^2$. II. Fast winding of the generating inner function”, Canad. J. Math., 55 (2003), 1264–1301 | MR | Zbl

[LS] Lyubarskii Yu. I., Seip K., “Weighted Paley–Wiener spaces”, J. Amer. Math. Soc., 15:4 (2002), 979–1006 | DOI | MR | Zbl

[MNH] Mashregi Dzh., Nazarov F. L., Khavin V. P., “Teorema Berlinga–Malyavena o multiplikatore: sedmoe dokazatelstvo”, Algebra i analiz, 17:5 (2005), 3–68 | MR

[N] Treatise on the shift operator. Spectral function theory, Grundlehren Math. Wiss., 273, Springer-Verlag, Berlin, 1986 | MR | MR

[NF] Sz.-Nagy B., Foiaş C., Harmonic analysis of operators on Hilbert space, Amer. Elsevier Publ. Co., Inc., New York; Akad. Kiadó, Budapest, 1970 | MR