Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~I
Algebra i analiz, Tome 20 (2008) no. 1, pp. 146-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a domain $\Omega$ in a complex plane $\mathbb C$, let $H(\Omega)$ denote the space of functions holomorphic in $\Omega$, and let $\mathscr P$ be a family of functions subharmonic in $\Omega$. Denote by $H_{\mathscr P}(\Omega )$ the class of $f\in H(\Omega)$ satisfying $|f(z)|\leq C_f\exp p_f(z)$, $z\in\Omega$, where $p_f \in\mathscr P$ and $C_f$ is a constant. The paper is aimed at conditions for a set $\Lambda\subset\Omega$ to be included in the zero set of some nonzero function in $H_{\mathscr P}(\Omega)$. In the first part, certain preparatory theorems are established about “quenching” the growth of a subharmonic function by adding to it a function of the form $\log|h|$, where $h$ is a nonzero function in $H(\Omega)$. The method is based on the balayage of measures and subharmonic functions.
Keywords: Holomorphic function, algebra of functions, weighted spaces, nonuniqueness sequence.
@article{AA_2008_20_1_a5,
     author = {B. N. Khabibullin and F. B. Khabibullin and L. Yu. Cherednikova},
     title = {Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise {connectedness.~I}},
     journal = {Algebra i analiz},
     pages = {146--189},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2008_20_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - F. B. Khabibullin
AU  - L. Yu. Cherednikova
TI  - Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~I
JO  - Algebra i analiz
PY  - 2008
SP  - 146
EP  - 189
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2008_20_1_a5/
LA  - ru
ID  - AA_2008_20_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A F. B. Khabibullin
%A L. Yu. Cherednikova
%T Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~I
%J Algebra i analiz
%D 2008
%P 146-189
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2008_20_1_a5/
%G ru
%F AA_2008_20_1_a5
B. N. Khabibullin; F. B. Khabibullin; L. Yu. Cherednikova. Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~I. Algebra i analiz, Tome 20 (2008) no. 1, pp. 146-189. http://geodesic.mathdoc.fr/item/AA_2008_20_1_a5/

[1] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polikruge i share”, Itogi nauki i tekhn. Ser. Mat. anal., 23, VINITI, M., 1985, 3–124 | MR

[2] Aleksandrov A. B., “Teoriya funktsii v share”, Itogi nauki i tekhn. Cer. Sovrem. probl. mat. Fundam. napravleniya, 8, VINITI, M., 1985, 115–190

[3] Hedenmalm H., “Recent progress in the function theory of the Bergman space”, Holomorphic Spaces (Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., 33, Cambridge Univ. Press, Cambridge, 1998, 35–50 | MR | Zbl

[4] Colwell P., Blaschke products. Bounded analytic functions, Univ. Michigan Press, Ann Arbor, 1985 | MR

[5] Djrbashian A., Shamoian F. A., Topics in the theory of $A_{\alpha}^p$ spaces, Teubner-Texte Math., 105, Teubner, Leipzig, 1988 | MR | Zbl

[6] Shamoyan F. A., “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakteristika nulei analiticheskikh v kruge funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Mat., 13:5–6 (1978), 405–422 | MR | Zbl

[7] Shamoyan F. A., “O nulyakh analiticheskikh v kruge funktsii, rastuschikh vblizi granitsy”, Izv. AN ArmSSR. Mat., 18:1 (1983), 15–27 | MR | Zbl

[8] Horowitz C., “Zero sets and radial zero sets in function spaces”, J. Anal. Math., 65 (1995), 145–159 | DOI | MR | Zbl

[9] Korenblum B., “An extension of the Nevanlinna theory”, Acta Math., 135 (1975), 187–219 | DOI | MR | Zbl

[10] Beller E., “Factorization for non-Nevanlinna classes of analytic functions”, Israel J. Math., 27:3–4 (1977), 320–330 | DOI | MR | Zbl

[11] Beller E., Horowitz C., “Zero sets and random zero sets in certain function spaces”, J. Anal. Math., 64 (1994), 203–217 | DOI | MR | Zbl

[12] Seip K., “On a theorem of Korenblum”, Ark. Mat., 32 (1994), 237–243 | DOI | MR | Zbl

[13] Seip K., “On Korenblum's density condition for the zero sequences of $A^{-\alpha}$”, J. Anal. Math., 67 (1995), 307–322 | DOI | MR | Zbl

[14] Bruna J., Massaneda X., “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66 (1995), 217–252 | DOI | MR | Zbl

[15] Luecking D., “Zero sequences for Bergman spaces”, Complex Variables Theory Appl., 30 (1996), 345–362 | MR | Zbl

[16] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | MR | Zbl

[17] Blasco O., Kukuryka A., Nowak M., “Luecking's condition for zeros of analytic functions”, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 58 (2004), 1–15 | MR | Zbl

[18] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 287–305 | MR | Zbl

[19] Khabibullin B. N., Zero (sub)sets for spaces of holomorphic functions and (sub)harmonic minorants, Electronic Archive at LANL, 18 Dec 2004, 42 p. http://arxiv.org/abs/math.CV/0412359

[20] Khabibullin B. N., “Posledovatelnosti nulei golomofnykh funktsii, predstavlenie meromorfnykh funktsii i garmonicheskie minoranty”, Mat. sb., 198:2 (2007), 121–160 | MR | Zbl

[21] Хабибуллин Б. Н. “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. mat., 55:5 (1991), 1101–1123

[22] Khabibullin B. N., “Teorema o naimenshei mazhorante i ee primeneniya. I. Tselye i meromorfnye funktsii”, Izv. RAN. Ser. mat., 57:1 (1993), 129–146 | MR | Zbl

[23] Khabibullin B. N., “Nekonstruktivnye dokazatelstva teoremy Berlinga–Malyavena o radiuse polnoty i teoremy needinstvennosti dlya tselykh funktsii”, Izv. RAN. Ser. mat., 58:4 (1994), 125–148 | MR | Zbl

[24] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Univ. Montréal, Publ. CRM, Montreal, QC, 1996 | MR

[25] Ransford T. J., “Jensen measures”, Approximation, Complex Analysis, and Potential Theory (Montreal, QC, 2000), NATO Sci. Ser. II Math. Phys. Chem., 37, Kluwer Acad. Publ., Dordrecht, 2001, 221–237 | MR | Zbl

[26] Khabibullin B. N., “Dual approach to certain questions for the weighted spaces of holomorphic functions”, Entire Functions in Modern Analysis (Tel-Aviv, 1997), Israel Math. Conf. Proc., 15, Bar-Ilan Univ., Ramat Gan, 2001, 207–219 | MR | Zbl

[27] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. mat., 65:5 (2001), 167–190 | MR | Zbl

[28] Khabibullin B. N., “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Mat. zametki, 66:4 (1999), 603–616 | MR

[29] Khabibullin B. N., “Otsenki ob'ema nulevykh mnozhestv golomorfnykh funktsii”, Izv. vuzov. Mat., 1992, no. 3(358), 58–63 | MR | Zbl

[30] Khabibullin B. N., “Teoremy edinstvennosti dlya golomorfnykh funktsii i vymetanie”, Kompleksnyi analiz. Teoriya operatorov. Matematicheskoe modelirovanie, VNTs RAN, Vladikavkaz, 2006, 118–132

[31] Cherednikova L. Yu., Khabibullin B. N., “Mnozhestva needinstvennosti dlya vesovykh algebr golomorfnykh v kruge funktsii”, Kompleksnyi analiz, differentsialnye uravneniya i smezhnye voprosy. I. Kompleksnyi analiz, Tr. Mezhdunar. konf., RAN. Ufim. nauch. tsentr. In-t mat. s VTs, Ufa, 2000, 195–200

[32] Khabibullin B. N., Cherednikova L. Yu., “Posledovatelnosti needinstvennosti dlya vesovykh algebr golomorfnykh funktsii v edinichnom kruge”, Tr. Mat. tsentra im. N. I. Lobachevskogo, 19, 2003, 221–223

[33] Cherednikova L. Yu., “Posledovatelnosti needinstvennosti dlya vesovykh algebr golomorfnykh funktsii v edinichnom kruge”, Mat. zametki, 77:5 (2005), 775–787 | MR | Zbl

[34] Cherednikova L. Yu., Khabibullin B. N., “Ustoichivost posledovatelnostei needinstvennosti dlya vesovykh algebr golomofnykh v kruge funktsii”, Nauchnaya konferentsiya po nauchno-tekhnicheskim programmam Minobrazovaniya RF, Sb. st. Ch. 1, Bashk. un-t, Ufa, 2000, 25–28

[35] Khabibullin B. N., Khabibullin F. B., “Zero subsets for spaces of function and the entropy of arcwise connectedness”, Geometricheskii analiz i ego prilozheniya, Tez. dokl. Mezhdunar. shk.-konf., Volgograd. un-t, Volgograd, 2004, 193–195 | MR

[36] Khabibullin B. N., “Nulevye podmnozhestva dlya vesovykh klassov golomorfnykh funktsii”, Vestn. Bashk. un-ta, 2004, no. 2, 59–63

[37] Cherednikova L. Yu., “O «gashenii» rosta subgarmonicheskikh funktsii”, Regionalnaya shkola-konferentsiya dlya studentov, aspirantov i molodykh uchenykh po matematike i fizike, Materialy konf. T. I. Matematika, Bashk. un-t, Ufa, 2001, 239–245

[38] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[39] Gamelin T. W., Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge–New York, 1978 | MR | Zbl

[40] Cole B. J., Ransford T. J., “Subharmonicity without upper semicontinuity”, J. Funct. Anal., 147 (1997), 420–442 | DOI | MR | Zbl

[41] Cole B. J., Ransford T. J., “Jensen measures and harmonic measures”, J. Reine Angew. Math., 541 (2001), 29–53 | MR | Zbl

[42] Khabibullin B. N., “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-)garmonicheskikh funktsii”, Sib. mat. zh., 44:4 (2003), 905–925 | MR | Zbl

[43] Epifanov O. V., “O razreshimosti neodnorodnogo uravneniya Koshi–Rimana v klassakh funktsii, ogranichennykh s vesom i sistemoi vesov”, Mat. zametki, 51:1 (1992), 83–92 | MR | Zbl

[44] Hörmander L., Notions of convexity, Progr. Math., 127, Birkhäuser Boston, Inc., Boston, MA, 1994 | MR | Zbl

[45] Ransford T. J., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[46] Garnett Dzh., Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[47] Cherednikova L. Yu., “Elementarnye otsenki s rasstoyaniem Kharnaka”, Regionalnaya shkola-konferentsiya dlya studentov, aspirantov i molodykh uchenykh po matematike i fizike, Materialy konf. T. II. Matematika, Bashk. un-t, Ufa, 2002, 87–90

[48] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[49] Brelo M., O topologiyakh i granitsakh v teorii potentsiala, Mir, M., 1974 | MR | Zbl

[50] Arkhangelskii A. V., Ponomarev V. I., Osnovy obschei topologii v zadachakh i uprazhneniyakh, Nauka, M., 1974 | MR

[51] Hayman W. K., Subharmonic functions, vol. 2, London Math. Soc. Monogr., 20, Acad. Press, London, 1989 | MR | Zbl