Normal cyclotomic schemes over a finite commutative ring
Algebra i analiz, Tome 19 (2007) no. 6, pp. 59-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cyclotomic association schemes over a finite commutative ring $R$ with identity are studied. The main goal is to identify the normal cyclotomic schemes $\mathcal{C}$, i.e., those for which $\operatorname{Aut}(\mathcal{C})\le A\Gamma L_1(R)$. The problem reduces to the case where the ring $R$ is local, and in this case a necessary condition of normality in terms of the subgroup of $R^\times$ that determines $\mathcal{C}$ is given. This condition is proved to be sufficient for a large class of local rings including the Galois rings of odd characteristic.
Keywords: Association scheme, cyclotomic schemes.
@article{AA_2007_19_6_a2,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {Normal cyclotomic schemes over a finite commutative ring},
     journal = {Algebra i analiz},
     pages = {59--85},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_6_a2/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - Normal cyclotomic schemes over a finite commutative ring
JO  - Algebra i analiz
PY  - 2007
SP  - 59
EP  - 85
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_6_a2/
LA  - ru
ID  - AA_2007_19_6_a2
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T Normal cyclotomic schemes over a finite commutative ring
%J Algebra i analiz
%D 2007
%P 59-85
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_6_a2/
%G ru
%F AA_2007_19_6_a2
S. A. Evdokimov; I. N. Ponomarenko. Normal cyclotomic schemes over a finite commutative ring. Algebra i analiz, Tome 19 (2007) no. 6, pp. 59-85. http://geodesic.mathdoc.fr/item/AA_2007_19_6_a2/

[1] Evdokimov S. A., Shurovost i otdelimost assotsiativnykh skhem, Dis. na soisk. uchen. st. dokt. fiz.-mat. nauk, SPbGU, SPb., 2004

[2] Evdokimov S. A., Ponomarenko I. N., “Kharakterizatsiya tsiklotomicheskikh skhem i normalnye koltsa Shura nad tsiklicheskoi gruppoi”, Algebra i analiz, 14:2 (2002), 11–55 | MR | Zbl

[3] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR | Zbl

[4] Dixon J. D., Mortimer B., Permutation groups, Grad. Texts in Math., 163, Springer-Verlag, New York, 1996 | MR | Zbl

[5] Goldbach R. W., Claasen H. L., “Cyclotomic schemes over finite rings”, Indag. Math. (N.S.), 3 (1992), 301–312 | DOI | MR | Zbl

[6] McConnel R., “Pseudo-ordered polynomials over a finite field”, Acta Arith., 8 (1962–1963), 127–151 | MR

[7] McDonald B. R., Finite rings with identity, Pure Appl. Math., 28, Marcel Dekker, Inc., New York, 1974 | MR

[8] Ito T., Munemasa A., Yamada M., “Amorphous association schemes over the Galois rings of characteristic $4$”, European J. Combin., 12 (1991), 513–526 | MR | Zbl

[9] Leung K. H., Man S. H., “On Schur rings over cyclic groups, II”, J. Algebra, 183 (1996), 273–285 | DOI | MR | Zbl

[10] Wan Z.-X., Lectures on finite fields and Galois rings, World Sci. Publ. Co., Inc., River Edge, NJ, 2003 | MR

[11] Wielandt H., Finite permutation groups, Academic Press, New York–London, 1964 | MR | Zbl

[12] Wielandt H., Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State Univ. Columbus, Dep. Math., Ohio, 1969