Iversen's formula for the second Chern classes of regular surfaces in any characteristic
Algebra i analiz, Tome 19 (2007) no. 5, pp. 137-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formula mentioned in the title is proved.
Keywords: Euler characteristic, Chern class, ferocious ramification, wild different.
@article{AA_2007_19_5_a5,
     author = {I. B. Zhukov},
     title = {Iversen's formula for the second {Chern} classes of regular surfaces in any characteristic},
     journal = {Algebra i analiz},
     pages = {137--158},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a5/}
}
TY  - JOUR
AU  - I. B. Zhukov
TI  - Iversen's formula for the second Chern classes of regular surfaces in any characteristic
JO  - Algebra i analiz
PY  - 2007
SP  - 137
EP  - 158
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a5/
LA  - ru
ID  - AA_2007_19_5_a5
ER  - 
%0 Journal Article
%A I. B. Zhukov
%T Iversen's formula for the second Chern classes of regular surfaces in any characteristic
%J Algebra i analiz
%D 2007
%P 137-158
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a5/
%G ru
%F AA_2007_19_5_a5
I. B. Zhukov. Iversen's formula for the second Chern classes of regular surfaces in any characteristic. Algebra i analiz, Tome 19 (2007) no. 5, pp. 137-158. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a5/

[1] Brylinski J.-L., “Théorie du corps de classes de Kato et revétements abéliens de surfaces”, Ann. Inst. Fourier (Grenoble), 33:3 (1983), 23–38 | MR | Zbl

[2] Deligne P., Letter to L. Illusie of 28.11.76, ne opublikovano

[3] Fulton W., Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) Ser. Modern Surveys in Math., 2, Springer-Verlag, Berlin, 1998 | MR | Zbl

[4] Greuel G.-M., Króning H., “Simple singularities in positive characteristic”, Math. Z., 203:2 (1990), 339–354 | DOI | MR | Zbl

[5] Hartshorne R., Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York-Heidelberg, 1977 | MR | Zbl

[6] Laumon G., “Semi-continuité du conducteur de Swan”, Astérisque, 83, ed. P. Deligne, 1981, 173–219 | MR | Zbl

[7] Kurke H., Vorlesungen über algebraische Flächen, Teubner-Texte Math., 43, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1982 | MR | Zbl

[8] Iitaka S., Algebraic geometry. An introduction to birational geometry of algebraic varieties, Grad. Texts in Math., 76, Springer-Verlag, New York-Berlin, 1982 | MR | Zbl

[9] Iversen B., “Numerical invariants and multiple planes”, Amer. J. Math., 92 (1970), 968–996 | DOI | MR | Zbl

[10] Parshin A. N., “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl

[11] Samuel P., “Singularités des variétés algébriques”, Bull. Soc. Math. France, 79 (1951), 121–129 | MR | Zbl

[12] Serre J.-P., Corps locaux, Actualitès Sci. Indust., 1296, Hermann, Paris, 1962 | MR

[13] Shafarevich I. R., Osnovy algebraicheskoi geometrii, 2-e izd., Nauka, M., 1988 | MR

[14] Yamada H., “Rational sections and Chern classes of vector bundles”, J. Math. Kyoto Univ., 6:2 (1967), 295–312 | MR | Zbl