Variations on the theme of D.\,K.~Faddeev's paper ``An explicit form of the Kummer--Takagi reciprocity law''
Algebra i analiz, Tome 19 (2007) no. 5, pp. 65-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following form of the Eisenstein reciprocity law is established: in the cyclotomic field $\mathbb{Q}(\zeta)$, the relation $(\frac{\alpha}{a})=(\frac{a}{\alpha})$ is equivalent to $\frac{a^{p-1}-1}{p}\cdot \underline{\alpha}'(1)\equiv 0\mod p$.
Keywords: Reciprocity law, cyclotomic field.
@article{AA_2007_19_5_a2,
     author = {S. V. Vostokov},
     title = {Variations on the theme of {D.\,K.~Faddeev's} paper {``An} explicit form of the {Kummer--Takagi} reciprocity law''},
     journal = {Algebra i analiz},
     pages = {65--69},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a2/}
}
TY  - JOUR
AU  - S. V. Vostokov
TI  - Variations on the theme of D.\,K.~Faddeev's paper ``An explicit form of the Kummer--Takagi reciprocity law''
JO  - Algebra i analiz
PY  - 2007
SP  - 65
EP  - 69
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a2/
LA  - ru
ID  - AA_2007_19_5_a2
ER  - 
%0 Journal Article
%A S. V. Vostokov
%T Variations on the theme of D.\,K.~Faddeev's paper ``An explicit form of the Kummer--Takagi reciprocity law''
%J Algebra i analiz
%D 2007
%P 65-69
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a2/
%G ru
%F AA_2007_19_5_a2
S. V. Vostokov. Variations on the theme of D.\,K.~Faddeev's paper ``An explicit form of the Kummer--Takagi reciprocity law''. Algebra i analiz, Tome 19 (2007) no. 5, pp. 65-69. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a2/

[1] Eisenstein G., “Beweis des allgemeinsten Reziprozitaetsgesetze zwischen rellen und komplexen Zahlen”, Mathematische Werke, Band II, Chelsea, New York, 1975, 189–198 | MR

[2] Faddeev D. K., “K yavnoi forme zakona vzaimnosti Kummera–Takagi”, Zap. nauchn. sem. LOMI, 1, 1966, 114–122 | MR | Zbl

[3] Hasse H., Zahlentheorie, Akademie-Verlag, Berlin, 1963 | MR | Zbl

[4] Vostokov S. V., “K zakonu vzaimnosti polya algebraicheskikh chisel”, Tr. Mat. in-ta AN SSSR, 148, 1978, 77–81 | MR | Zbl