Action of Hecke operators on Maass theta series and zeta functions
Algebra i analiz, Tome 19 (2007) no. 5, pp. 3-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The introductory part contains definitions and basic properties of harmonic theta series, Siegel modular forms, and Hecke operators. Then the transformation formulas are recalled, related to the action of modular substitutions and regular Hecke operators on general harmonic theta series, including specialization to the case of Maass theta series. The following new results are obtained: construction of infinite sequences of eigenfunctions for all regular Hecke operators on spaces of Maass theta series; in the case of Maass theta series of genus 2, all the eigenfunctions are constructed and the corresponding Andrianov zeta functions are expressed in the form of products of two $L$-functions of the relevant imaginary quadratic rings. The proofs are based on a combination of explicit formulas for the action of Hecke operators on theta series with Gauss composition of binary quadratic forms.
Keywords: Harmonic theta series, Hecke operators, Maass theta series, Siegel modular forms, zeta functions of Siegel modular forms.
@article{AA_2007_19_5_a0,
     author = {A. N. Andrianov},
     title = {Action of {Hecke} operators on {Maass} theta series and zeta functions},
     journal = {Algebra i analiz},
     pages = {3--36},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_5_a0/}
}
TY  - JOUR
AU  - A. N. Andrianov
TI  - Action of Hecke operators on Maass theta series and zeta functions
JO  - Algebra i analiz
PY  - 2007
SP  - 3
EP  - 36
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_5_a0/
LA  - ru
ID  - AA_2007_19_5_a0
ER  - 
%0 Journal Article
%A A. N. Andrianov
%T Action of Hecke operators on Maass theta series and zeta functions
%J Algebra i analiz
%D 2007
%P 3-36
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_5_a0/
%G ru
%F AA_2007_19_5_a0
A. N. Andrianov. Action of Hecke operators on Maass theta series and zeta functions. Algebra i analiz, Tome 19 (2007) no. 5, pp. 3-36. http://geodesic.mathdoc.fr/item/AA_2007_19_5_a0/

[1] Andrianov A. N., “Eilerovy proizvedeniya, otvechayuschie modulyarnym formam Zigelya roda 2”, UMN, 29:3(177) (1974), 43–110 | MR | Zbl

[2] Andrianov A. N., “Quadratic forms and Hecke operators”, Grundlehren Math. Wiss., 286, Springer-Verlag, Berlin, 1987 | MR | Zbl

[3] Andrianov A. N., “Kompozitsiya reshenii kvadratichnykh diofantovykh uravnenii”, UMN, 46:2(278) (1991), 3–40 | MR | Zbl

[4] Andrianov A. N., “Multiplikativnye razlozheniya tselochislennykh predstavlenii binarnykh kvadratichnykh form”, Algebra i analiz, 5:1 (1993), 81–108 | MR | Zbl

[5] Andrianov A. N., “Simmetrii garmonicheskikh teta-funktsii tselochislennykh kvadratichnykh form”, UMN, 50:4(304) (1995), 3–44 | MR | Zbl

[6] Andrianov A. N., “Garmonicheskie teta-funktsii i operatory Gekke”, Algebra i analiz, 8:5 (1996), 1–31 | MR | Zbl

[7] Freitag E., “Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten”, Math. Ann., 258 (1981–1982), 419–440 | DOI | MR

[8] Freitag E., Singular modular forms and theta relations, Lecture Notes in Math., 1487, Springer-Verlag, Berlin, 1991 | MR | Zbl

[9] Maass H., “Konstruktion von Spitzenformen beliebigen Grades mit Hilfe von Thetareihen”, Math. Ann., 226 (1977), 275–284 | DOI | MR | Zbl

[10] Salvati-Manni R., Top J., “Cusp forms of weight 2 for the group $\Gamma_2(4,8)$”, Amer. J. Math., 115:2 (1993), 455–486 | DOI | MR | Zbl

[11] Yoshida H., “Siegel's modular forms and the arithmetic of quadratic forms”, Invent. Math., 60:3 (1980), 193–248 | DOI | MR | Zbl