Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2007_19_4_a4, author = {K. A. Izyurov}, title = {A~uniqueness theorem for {Riesz} potentials}, journal = {Algebra i analiz}, pages = {113--138}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/} }
K. A. Izyurov. A~uniqueness theorem for Riesz potentials. Algebra i analiz, Tome 19 (2007) no. 4, pp. 113-138. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/
[1] Aleksandrov A. B., Kargaev P. P., “Klassy Khardi garmonicheskikh v poluprostranstve funktsii”, Algebra i analiz, 5:2 (1993), 1–73 | MR | Zbl
[2] Binder I., “Teorema ob ispravlenii gradientami garmonicheskikh funktsii”, Algebra i analiz, 5:2 (1993), 91–107 | MR | Zbl
[3] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR
[4] Khavin V. P., “Printsip neopredelennosti dlya odnomernykh potentsialov M. Rissa”, Dokl. AN SSSR, 264:3 (1982), 559–563 | MR | Zbl
[5] Beliaev D. B., Havin V. P., “On the uncertainty principle for M. Riesz potentials”, Ark. Mat., 39 (2001), 229–243 | DOI | MR
[6] Bourgain J., Wolff T., “A remark on gradients of harmonic functions in dimention $\geq3$”, Colloq. Math., 60–61:1 (1990), 253–260 | MR | Zbl
[7] Havin V., Jöricke B., The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl
[8] Wolff T., “Counterexamples with harmonic gradients in $\mathbb{R}^3$”, Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., 42, eds. C. Fefferman, R. Fefferman, S. Wainger, Princeton Univ. Press, Princeton, NJ, 1995, 321–384 | MR | Zbl