A~uniqueness theorem for Riesz potentials
Algebra i analiz, Tome 19 (2007) no. 4, pp. 113-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence is proved of a nonzero Hölder function $f\colon\mathbb{R}\to\mathbb{R}$ that vanishes together with its M. Riesz potential $f\ast\frac{1}{|x|^{1-\alpha}}$ at all points of some set of positive length. This result improves that of D. Beliaev and V. Havin.
Keywords: Riesz potential, uncertainty principle, Hölder condition.
@article{AA_2007_19_4_a4,
     author = {K. A. Izyurov},
     title = {A~uniqueness theorem for {Riesz} potentials},
     journal = {Algebra i analiz},
     pages = {113--138},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/}
}
TY  - JOUR
AU  - K. A. Izyurov
TI  - A~uniqueness theorem for Riesz potentials
JO  - Algebra i analiz
PY  - 2007
SP  - 113
EP  - 138
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/
LA  - ru
ID  - AA_2007_19_4_a4
ER  - 
%0 Journal Article
%A K. A. Izyurov
%T A~uniqueness theorem for Riesz potentials
%J Algebra i analiz
%D 2007
%P 113-138
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/
%G ru
%F AA_2007_19_4_a4
K. A. Izyurov. A~uniqueness theorem for Riesz potentials. Algebra i analiz, Tome 19 (2007) no. 4, pp. 113-138. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a4/

[1] Aleksandrov A. B., Kargaev P. P., “Klassy Khardi garmonicheskikh v poluprostranstve funktsii”, Algebra i analiz, 5:2 (1993), 1–73 | MR | Zbl

[2] Binder I., “Teorema ob ispravlenii gradientami garmonicheskikh funktsii”, Algebra i analiz, 5:2 (1993), 91–107 | MR | Zbl

[3] Zigmund A., Trigonometricheskie ryady, Mir, M., 1965 | MR

[4] Khavin V. P., “Printsip neopredelennosti dlya odnomernykh potentsialov M. Rissa”, Dokl. AN SSSR, 264:3 (1982), 559–563 | MR | Zbl

[5] Beliaev D. B., Havin V. P., “On the uncertainty principle for M. Riesz potentials”, Ark. Mat., 39 (2001), 229–243 | DOI | MR

[6] Bourgain J., Wolff T., “A remark on gradients of harmonic functions in dimention $\geq3$”, Colloq. Math., 60–61:1 (1990), 253–260 | MR | Zbl

[7] Havin V., Jöricke B., The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl

[8] Wolff T., “Counterexamples with harmonic gradients in $\mathbb{R}^3$”, Essays on Fourier Analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), Princeton Math. Ser., 42, eds. C. Fefferman, R. Fefferman, S. Wainger, Princeton Univ. Press, Princeton, NJ, 1995, 321–384 | MR | Zbl