Motivic integrals and functional equations
Algebra i analiz, Tome 19 (2007) no. 4, pp. 92-112
Cet article a éte moissonné depuis la source Math-Net.Ru
A functional equation for the motivic integral corresponding to the Milnor number of an arc is derived by using the Denef–Loeser formula for the change of variables. Its solution is a function of five auxiliary parameters, it is unique up to multiplication by a constant, and there is a simple recursive algorithm to find its coefficients. The method is fairly universal and gives, for example, equations for the integral corresponding to the intersection number over the space of pairs of arcs and over the space of unordered collections of arcs.
Keywords:
Motivic integration, Milnor number, motivic measure, Grothendieck ring.
@article{AA_2007_19_4_a3,
author = {E. Gorskii},
title = {Motivic integrals and functional equations},
journal = {Algebra i analiz},
pages = {92--112},
year = {2007},
volume = {19},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a3/}
}
E. Gorskii. Motivic integrals and functional equations. Algebra i analiz, Tome 19 (2007) no. 4, pp. 92-112. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a3/
[1] Denef J., Loeser F., “Germs of arcs on singular algebraic varieties and motivic integration”, Invent. Math., 135:1 (1999), 201–232 | DOI | MR | Zbl
[2] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “A power structure over the Grothendieck ring of varieties”, Math. Res. Lett., 11:1 (2004), 49–57 | MR | Zbl
[3] Kapranov M., The elliptic curve in the S-duality theory and Eisenstein series for Kac-Moody groups, arXiv: /math.AG/0001005
[4] Heinloth F., A note on functional equations for zeta functions with values in Chow motives, arXiv: /math.AG/0512237 | MR
[5] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, T. 2, Nauka, M., 1984 | MR