Uniform subalgebras of~$L^\infty$ on the unit circle generated by almost periodic functions
Algebra i analiz, Tome 19 (2007) no. 4, pp. 1-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogs of almost periodic functions for the unit circle are introduced. Certain uniform algebras generated by such functions are studied, the corona theorems for them are proved, and their maximal ideal spaces are described.
Keywords: Bounded holomorphic function, almost periodic function, uniform algebra, maximal ideal space, corona theorem.
@article{AA_2007_19_4_a0,
     author = {A. Brudnyi and D. Kinzebulatov},
     title = {Uniform subalgebras of~$L^\infty$ on the unit circle generated by almost periodic functions},
     journal = {Algebra i analiz},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_4_a0/}
}
TY  - JOUR
AU  - A. Brudnyi
AU  - D. Kinzebulatov
TI  - Uniform subalgebras of~$L^\infty$ on the unit circle generated by almost periodic functions
JO  - Algebra i analiz
PY  - 2007
SP  - 1
EP  - 33
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_4_a0/
LA  - en
ID  - AA_2007_19_4_a0
ER  - 
%0 Journal Article
%A A. Brudnyi
%A D. Kinzebulatov
%T Uniform subalgebras of~$L^\infty$ on the unit circle generated by almost periodic functions
%J Algebra i analiz
%D 2007
%P 1-33
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_4_a0/
%G en
%F AA_2007_19_4_a0
A. Brudnyi; D. Kinzebulatov. Uniform subalgebras of~$L^\infty$ on the unit circle generated by almost periodic functions. Algebra i analiz, Tome 19 (2007) no. 4, pp. 1-33. http://geodesic.mathdoc.fr/item/AA_2007_19_4_a0/

[1] Bohr H., Almost periodic functions, Chelsea Publ. Co., New York, 1947 | MR

[2] Brudnyi A., “Topology of the maximal ideal space of $H^\infty$”, J. Funct. Anal., 189:1 (2002), 21–52 | DOI | MR | Zbl

[3] Böttcher A., “On the corona theorem for almost periodic functions”, Integral Equations Operator Theory, 33:3 (1999), 253–272 | DOI | MR | Zbl

[4] Dieudonné J., Foundations of modern analysis, I, Pure Appl. Math., 10, Acad. Press, New York-London, 1969 | MR

[5] Garnett J., Bounded analytic functions, Pure Appl. Math., 96, Acad. Press, New York-London, 1981 | MR | Zbl

[6] Hirzebruch F., Topological methods in algebraic geometry, Grundlehren Math. Wiss., 131, Springer-Verlag, New York, 1966 | MR

[7] Jessen B., Tornehave H., “Mean motions and zeros of almost periodic functions”, Acta Math., 77 (1945), 137–279 | DOI | MR | Zbl

[8] Lindelöf E., “Sur une principe générale de l'analyse et ces applications `a la théorie de la representation conforme”, Acta Soc. Sci. Fenn., 46 (1915) | Zbl

[9] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978 | MR

[10] Pontryagin L. S., Selected works. V. 2. Topological groups, Gordon and Breach Sci. Publ., New York, 1986 | MR

[11] Royden H., “Function algebras”, Bull. Amer. Math. Soc., 69 (1963), 281–298 | DOI | MR | Zbl

[12] Sarason D., “Toepliz operators with semi-almost periodic symbols”, Duke Math. J., 44 (1977), 357–364 | DOI | MR | Zbl

[13] Spitkovskii I., “O faktorizatsii treugolnykh matrits-funktsii s diagonalnymi elementami klassa SAP”, Nauch. tr. Yubil. seminara po kraevym zadacham (Minsk, 1981), Universitetskoe, Minsk, 1985, 188–192 | MR