Homogenization with corrector for a~stationary periodic Maxwell system
Algebra i analiz, Tome 19 (2007) no. 3, pp. 183-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenization problem in the small period limit for a stationary periodic Maxwell system in $\mathbb{R}^3$ is studied. It is assumed that the dielectric permittivity and the magnetic permeability are rapidly oscillating (depending on $\mathbf{x}/\varepsilon$), positive definite, and bounded matrix-valued functions. For all four physical fields (the strength of the electric field, the strength of the magnetic field, the electric displacement vector, and the magnetic displacement vector), uniform approximations in the $L_2(\mathbb{R}^3)$-norm are obtained with the (order-sharp) error term of order. Besides solutions of the homogenized Maxwell system, the approximations contain rapidly oscillating terms of zero order that weakly tend to zero. These terms can be interpreted as correctors of zero order.
Keywords: Periodic Maxwell operator, homogenization, effective medium, corrector.
@article{AA_2007_19_3_a5,
     author = {T. A. Suslina},
     title = {Homogenization with corrector for a~stationary periodic {Maxwell} system},
     journal = {Algebra i analiz},
     pages = {183--235},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_3_a5/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Homogenization with corrector for a~stationary periodic Maxwell system
JO  - Algebra i analiz
PY  - 2007
SP  - 183
EP  - 235
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_3_a5/
LA  - ru
ID  - AA_2007_19_3_a5
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Homogenization with corrector for a~stationary periodic Maxwell system
%J Algebra i analiz
%D 2007
%P 183-235
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_3_a5/
%G ru
%F AA_2007_19_3_a5
T. A. Suslina. Homogenization with corrector for a~stationary periodic Maxwell system. Algebra i analiz, Tome 19 (2007) no. 3, pp. 183-235. http://geodesic.mathdoc.fr/item/AA_2007_19_3_a5/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam-New York, 1978 | MR

[3] Birman M. Sh., Suslina T. A., “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Systems, Approximations, Singular Integral Operators and Related Topics (Bordeaux, 2000), Oper. Theory Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR

[7] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR

[8] Birman M. Sh., Suslina T. A., “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella v sluchae postoyannoi magnitnoi pronitsaemosti”, Funkts. analiz i ego pril., 41:2 (2007), 3–23 | MR | Zbl

[9] Huang Q., “Estimates on the generalized Morrey spaces $L_{\varphi}^{2,\lambda}$ and $\mathrm{BMO}_\psi$ for linear elliptic systems”, Indiana Univ. Math. J., 45:2 (1996), 397–439 | DOI | MR | Zbl

[10] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[11] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR

[12] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[13] Suslina T. A., “Ob usrednenii periodicheskoi sistemy Maksvella”, Funkts. analiz i ego pril., 38:3 (2004), 90–94 | MR | Zbl

[14] Suslina T. A., “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella”, Algebra i analiz, 16:5 (2004), 162–244 | MR