Some extremal problems for vector bundles
Algebra i analiz, Tome 19 (2007) no. 2, pp. 131-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analogs of well-known problems and theorems on convex bodies are considered for the case where the convex bodies are replaced by continuous fields of convex bodies in vector bundles.
Keywords: Field of convex bodies, mass distribution, normed plane.
@article{AA_2007_19_2_a7,
     author = {V. V. Makeev},
     title = {Some extremal problems for vector bundles},
     journal = {Algebra i analiz},
     pages = {131--155},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a7/}
}
TY  - JOUR
AU  - V. V. Makeev
TI  - Some extremal problems for vector bundles
JO  - Algebra i analiz
PY  - 2007
SP  - 131
EP  - 155
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a7/
LA  - ru
ID  - AA_2007_19_2_a7
ER  - 
%0 Journal Article
%A V. V. Makeev
%T Some extremal problems for vector bundles
%J Algebra i analiz
%D 2007
%P 131-155
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a7/
%G ru
%F AA_2007_19_2_a7
V. V. Makeev. Some extremal problems for vector bundles. Algebra i analiz, Tome 19 (2007) no. 2, pp. 131-155. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a7/

[1] Makeev V. V., “O nekotorykh kombinatorno-geometricheskikh zadachakh dlya vektornykh rassloenii”, Algebra i analiz, 14:6 (2002), 169–191 | MR | Zbl

[2] Gryunbaum B., Etyudy po kombinatornoi geometrii i teorii vypuklykh tel, Nauka, M., 1971 | MR | Zbl

[3] Makeev V. V., “Ploskie secheniya vypuklykh tel i universalnye rassloeniya”, Zap. nauch. semin. POMI, 280, 2001, 219–233 | MR | Zbl

[4] Fáry I., “Sur la densité des réseaux de domaines convexes”, Bull. Soc. Math. France, 78 (1950), 152–161 | MR | Zbl

[5] Tot L. F., Raspolozhenie na ploskosti, na sfere i v prostranstve, Fizmatlit, M., 1958

[6] Besicovitch A., “Measure of asymmetry of convex curves”, J. London Math. Soc., 23 (1948), 237–240 | DOI | MR

[7] Shnirelman L. G., “O nekotorykh geometricheskikh svoistvakh zamknutykh krivykh”, UMN, 1944, no. 10, 34–44

[8] Makeev V. V., “Zadacha Knastera i pochti sfericheskie secheniya”, Matem. sb., 180:3 (1989), 424–431 | Zbl

[9] Makeev V. V., “O priblizhenii krugami i ellipsami dvumernykh sechenii vypuklykh tel”, Algebra i analiz, 16:6 (2004), 162–171 | MR

[10] Makeev V. V., “Affinno-vpisannye i affinno-opisannye mnogougolniki i mnogogranniki”, Zap. nauch. semin. POMI, 231, 1995, 286–298

[11] Dvoretzky A., “Some results on convex bodies and Banach spaces”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, 123–160 | MR | Zbl

[12] Makeev V. V., “O nekotorykh geometricheskikh svoistvakh vypuklykh trekhmernykh tel”, Algebra i analiz, 14:5 (2002), 96–109 | MR | Zbl

[13] Makeev V. V., “O priblizhenii trekhmernogo vypuklogo tela tsilindrami”, Algebra i analiz, 17:2 (2005), 133–144 | MR

[14] Buck R., Buck E., “Equipartition of convex sets”, Math. Mag., 22 (1949), 195–198 | MR

[15] Makeev V. V., “O nekotorykh svoistvakh nepreryvnykh otobrazhenii sfer i zadachakh kombinatornoi geometrii”, Geometricheskie voprosy teorii funktsiii mnozhestv, Mezhvuz. matem. sb., Kalinin. gos. un-t, Kalinin, 1986, 75–85 | MR | Zbl

[16] Reshetnyak Yu. G., “Odna ekstremalnaya zadacha iz teorii vypuklykh krivykh”, UMN, 8:6(58) (1953), 125–126 | MR | Zbl

[17] Laugwitz D., “Konvexe Mittelpunktsbereiche und normierte Räume”, Math. Z., 61 (1954), 235–244 | DOI | MR

[18] Makeev V. V., “O nekotorykh geometricheskikh svoistvakh vypuklykh tel, II”, Algebra i analiz, 15:6 (2003), 74–85 | MR | Zbl

[19] Dyson F. J., “Continuous functions defined on spheres”, Ann. Math. (2), 54 (1951), 534–536 | DOI | MR | Zbl

[20] Pal J., “Über ein elementares Variationsproblem”, Danske Vid. Selsk Mat.-Fys. Medd., 3:2 (1920), 35 | Zbl

[21] Makeev V. V., “Universalnye pokryshki, I”, Ukr. geom. sb., 24 (1981), 70–79 | MR | Zbl

[22] Gale D., “On inscribing n-dimensional sets in a regular $n$-simplex”, Proc. Amer. Math. Soc., 4 (1953), 222–225 | DOI | MR | Zbl

[23] Makeev V. V., “Skol kruglaya ten suschestvuet u vypuklogo tela”, Zap. nauch. semin. POMI, 329, 2005, 67–78 | MR | Zbl

[24] Fadell E., Husseini S., “An ideal-valued cohomological index theory with applications to Borsuk–Ulam and Bourgin–Yang theorem”, Ergodic Theory Dynam. Systems, 8 Charles Conley Memorial Issue (1988), 73–85 | MR | Zbl

[25] Z̆ivaljević R. T., Vrećica S. T., “An extension of the ham sandwich theorem”, Bull. London Math. Soc., 22 (1990), 183–186 | DOI | MR

[26] Dolnikov V. L., “Transversali semeistv mnozhestv v $\mathbb{R}^n$ i svyaz mezhdu teoremami Khelli i Borsuka”, Matem. sb., 184:5 (1993), 111–132

[27] Cohen F., Lusk E. L., “Configuration-like spaces and the Borsuk–Ulam theorem”, Proc. Amer. Math. Soc., 56 (1976), 313–317 | DOI | MR | Zbl

[28] Scherba A. I., “Ob otsenke perimetra normiruyuschei figury na ploskosti Minkovskogo”, 5 Mezhdunarodnaya konferentsiya po geometrii i topologii pamyati A. V. Pogorelova, Tezisy dokl. (Cherkassy, 2003)

[29] Scherba A. I., “Ob otsenke perimetra edinichnogo kruga na ploskosti Minkovskogo”, Tr. Rubtsov. industr. in-ta, 12 (2003), 96–107 | Zbl

[30] Makeev V. V., “Ob otsenke sverkhu perimetra nesimmetrichnogo edinichnogo kruga na ploskosti Minkovskogo”, Zap. nauch. semin. POMI, 299, 2003, 262–266