Estimates for derivatives of rational functions and the fourth Zolotarev problem
Algebra i analiz, Tome 19 (2007) no. 2, pp. 122-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

An estimate is obtained for the derivatives of real rational functions that map a compact set on the real line to another set of the same kind. Many well-known inequalities (due to Bernstein, Bernstein—Szegö, V. S. Videnskii, V. N. Rusak, and M. Baran–V. Totik) are particular cases of this estimate. It is shown that the estimate is sharp. With the help of the solution of the fourth Zolotarev problem, a class of examples is constructed in which the estimates obtained turn into identities.
Keywords: Estimates of derivatives, optimal filter, Zolotarev problems.
@article{AA_2007_19_2_a6,
     author = {A. L. Lukashov},
     title = {Estimates for derivatives of rational functions and the fourth {Zolotarev} problem},
     journal = {Algebra i analiz},
     pages = {122--130},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2007_19_2_a6/}
}
TY  - JOUR
AU  - A. L. Lukashov
TI  - Estimates for derivatives of rational functions and the fourth Zolotarev problem
JO  - Algebra i analiz
PY  - 2007
SP  - 122
EP  - 130
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2007_19_2_a6/
LA  - ru
ID  - AA_2007_19_2_a6
ER  - 
%0 Journal Article
%A A. L. Lukashov
%T Estimates for derivatives of rational functions and the fourth Zolotarev problem
%J Algebra i analiz
%D 2007
%P 122-130
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2007_19_2_a6/
%G ru
%F AA_2007_19_2_a6
A. L. Lukashov. Estimates for derivatives of rational functions and the fourth Zolotarev problem. Algebra i analiz, Tome 19 (2007) no. 2, pp. 122-130. http://geodesic.mathdoc.fr/item/AA_2007_19_2_a6/

[1] Borwein P., Erdélyi T., Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[2] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ. Co., Inc., River Edge, NJ, 1994 | MR

[3] Rahman Q. I., Schmeisser G., Les inégalités de Markoff et de Bernstein, Séminaire de Mathématiques Supérieures, 86, Presses Univ. Montréal, Montreal, QC, 1983 | MR | Zbl

[4] Dubinin V. N., “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[5] Erdélyi T., Szabados J., “On a generalization of the Bernstein–Markov inequality”, Algebra i analiz, 14:4 (2002), 36–53 | MR | Zbl

[6] Pekarskii A. A., “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii v prostranstvakh $L_p$, $0

1$, na krivykh Lavrenteva”, Algebra i analiz, 16:3 (2004), 143–170 | MR | Zbl

[7] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii na neskolkikh otrezkakh”, Izv. RAN. Ser. mat., 68:3 (2004), 115–138 | MR

[8] Zolotarev E. I., “Prilozhenie ellipticheskikh funktsii k voprosam o funktsiyakh, naimenee i naibolee uklonyayuschikhsya ot nulya”, Poln. sobr. soch., 2, AN SSSR, L., 1932, 1–59

[9] Akhiezer N. I., “Ob odnoi zadache E. I. Zolotareva”, Izv. AN SSSR. Otdel. fiz.-mat. nauk, 1929, no. 10, 919–931

[10] Gonchar A. A., “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78(120):4 (1969), 640–654 | Zbl

[11] Robinson R. M., “Conjugate algebraic integers in real point sets”, Math. Z., 84 (1964), 415–427 | DOI | MR | Zbl

[12] McKean H. P., van Moerbeke P., “Hill and Toda curves”, Comm. Pure Appl. Math., 33 (1980), 23–42 | DOI | MR | Zbl

[13] Bogatyrev A. B., “Ob effektivnom vychislenii mnogochlenov Chebysheva dlya neskolkikh otrezkov”, Matem. sb., 190:11 (1999), 15–50 | MR | Zbl

[14] Peherstorfer F., “Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping”, J. Approx. Theory, 111 (2001), 180–195 | DOI | MR | Zbl

[15] Totik V., “Polynomial inverse images and polynomial inequalities”, Acta Math., 187 (2001), 139–160 | DOI | MR | Zbl

[16] Aptekarev A. I., “Asimptoticheskie svoistva mnogochlenov, ortogonalnykh na sisteme konturov, i periodicheskie dvizheniya tsepochek Toda”, Matem. sb., 125(167):2(10) (1984), 231–258 | MR

[17] Peherstorfer F., “Orthogonal and extremal polynomials on several intervals”, J. Comput. Appl. Math., 48 (1993), 187–205 | DOI | MR | Zbl

[18] Peherstorfer F., “On Bernstein-Szegö orthogonal polynomials on several intervals. II. Orthogonal polynomials with periodic recurrence coefficients”, J. Approx. Theory, 64 (1991), 123–161 | DOI | MR | Zbl

[19] Akhiezer N. I., Lektsii po teorii approksimatsii, 2-e izd., Nauka, M., 1965 | MR

[20] Widom H., “Extremal polynomials associated with a system of curves in the complex plane”, Adv. Math., 3 (1969), 127–232 | DOI | MR | Zbl

[21] Saff E. B., Totik V., Logarithmic potentials with external fields, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[22] Lukashov A. L., “Neravenstva dlya proizvodnykh ratsionalnykh funktsii”, Kompleksnyi analiz i ego prilozheniya, Tez. dokl., Krasnodar, 2005, 70–71

[23] Lukashov A. L., “Neravenstva dlya proizvodnykh trigonometricheskikh ratsionalnykh funktsii”, Sovremennye problemy matematiki, mekhaniki, informatiki, Tez. dokl., Tula, 2005, 116–117

[24] Malozemov V. N., “Zadacha sinteza mnogopolosnogo elektricheskogo filtra”, Zhurn. vychisl. mat. i mat. fiz., 19:3 (1979), 601–609 | MR

[25] Lukashov A. L., “Tochnoe reshenie odnoi zadachi postroeniya optimalnogo elektricheskogo filtra”, Issledovaniya po algebre, teorii chisel, funktsionalnomu analizu i smezhnym voprosam, Vyp. 1, Saratov, 2003, 84–90